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Abstract

We present here a review of our modelling efforts in recent years
based on associative memory, artificial neural networks, toillustrate the
main basic mechanisms of neurotic mental behavior as described by
Freud. We proposed, that neurotic behavior may be understood as an
associative memory process in the brain, and that the symbolic associa-
tive process involved in psychoanalytic working-through can be mapped
onto a corresponding process of reconfiguration of the neural network.
The connection of symbolic processing to sensorial memory traces il-
lustrates a phenomenological view of the mind, where consciousness
is deeply rooted in sensorial experience with the environment and the
association of symbols to meaning. These associative memory models
for mental processes suggest that g-MaxEnt distributions may be rel-
evant for the study of these neural models. We therefore also review
our recent work regarding dynamical mechanisms leading to g-MaxEnt
distributions in memory neural networks, when these are modeled by
nonlinear Fokker-Planck equations.

Keyphrases

Consciousness, unconsciousness, mental processes, meta-
representations, self-organized associative-memory neural networks,
entropic measures, generalized statistical mechanics, nonlinear
Fokker—Planck equations.

Introduction

There has been much effort in recent decades to develop
mathematical-computational models of mental phenomena and pro-
cesses studied and treated by psychologists, psychiatrists and neurosci-
entists (Freud 1958; Freud 1966; Kandel et al. 2000; Kandel 2005), such
as creativity, delusions, disorganized thought, schizophrenia and the
neuroses (Cleeremans et al. 2007; Taylor and Villa 2001; Taylor 2011;
Carvalho et al. 2003; Wedemann, Carvalho, and Donangelo 2006b;
Wedemann, de Carvalho, et al. 2008; Wedemann, Donangelo, et al.
2009a). Psychodynamical theories correlate creativity, psychopathol-
ogy and unconsciousness, and aspects such as broader, distant or looser
associations and unfocusing of attention are common in describing such
mental processes. Memory functioning is a crucial aspect in these char-
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acterizations and it is thus highly important to approach the problem
of describing the mechanisms whereby we remember. How do we
reminisce (both consciously and unconsciously)? Artificial associative
memory models (AMMs) have been widely used as artificial storage
devices and also to represent an approximation of human memory
functioning. Some examples of these models are the Hopfield and
Cohen-Grossberg models (Hopfield 1984; Cohen and Grossberg 1983).
We have used artificial neural networks, and in particular AMMs, to
develop illustrative, schematic, self-organizing, neurocomputational
models to describe mechanisms underlying mental processes, both nor-
mal and pathological, and to represent the interplay between conscious
and unconscious mental activity (Carvalho et al. 2003; Wedemann, Car-
valho, and Donangelo 2006a; Wedemann, Carvalho, and Donangelo
2006b; Wedemann, de Carvalho, et al. 2008; Wedemann, Donan-
gelo, et al. 2009a; Wedemann, Donangelo, et al. 2009b; Wedemann,
Carvalho, and Donangelo 2011; Siddiqui et al. 2018; Wedemann and
Carvalho 2012).

Stochastic versions of AMMs, such as the Boltzmann machine (Hertz
et al. 1991) and Generalized Simulated Annealing (GSA) (Tsallis and
Stariolo 1996), involve entropic measures. Therefore, it is essential to
understand how fundamental concepts, theories and methods from
statistical mechanics can be used to support the development of models
of associative memory (Tsallis 2023). Here we review our previous
modeling efforts regarding associative memory, with a focus on neurotic
mental functioning (Freud 1966; Kandel 2005). We will discuss the main
features of the algorithms that we have developed for our model and
how fundamental, statistical mechanical, theoretical tools are used in
these developments.

Freud and the Neuroses

We have approached the challenge of developing a computational
model with a neuronal mechanism to describe neurotic mental function-
ing by considering three very basic findings of Sigmund Freud (Freud
1958; Freud 1966). First, he detected in his work with neurotic patients
that traumatic and repressed memories are knowledge which is present
in their memories although they are incapable, momentarily or per-
manently, to represent them symbolically, ie., these memories are
inaccessible to the patient’s consciousness, and he thus called it un-
conscious knowledge. His second very important observation is that
these patients systematically repeated symptoms in the form of ideas
and impulses, a tendency that he called a compulsion to repeat. He
was able to relate this compulsion to repeat to the traumatic and re-
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pressed memories of the patient, and this causal relationship is one of
his profoundly significant contributions. In a next third seminal step,
he found that neurotic patients have obtained relief and cure of their
painful symptoms through a mechanism that he called working-through.
This technique aims at having the patient access unconscious memories
in order to elaborate knowledge regarding the causes of symptoms
in order to understand and change his compulsion to repeat. It is a
process of symbolization that consists of analyzing symptoms, dreams,
free associative talking, parapraxes (forgetting, slips of the tongue and
pen, misreading, etc.), and also that which is acted out by the patient in
transference between him and the psychoanalyst. By working-through
in psychoanalytic sessions, the patient represents through symbolical
mechanisms such as language his originally unconscious memories.

A Computational Model for the Neuroses

We proposed a computational model where the neuroses are de-
scribed by an associative memory process (Wedemann, de Carvalho,
et al. 2008; Wedemann, Donangelo, et al. 2009a; Siddiqui et al. 2018).
An associative memory is a mechanism whereby a network, when pre-
sented with an input pattern .S, accesses a specific stored pattern .S’
that is most similar to .S than the other stored patterns. The compulsion
to repeat a neurotic symptom or act is then described as a response of
the network to a stimulus S which resembles a repressed (unconscious)
memory trace S”’. Stimulus S causes the neural network to stabilize
on S’, corresponding to a minimal energy state of the network, that
activates the neurotic act. Thus, in neurotic behavior, the symptom is
not a response to a stimulus as a novel experience, but is a consequence
of triggering the access to a repressed memory S’.

Our model consists of a memory structure with two neural network
modules representing sensorial and symbolic memories (see Fig. 1,
Wedemann, Donangelo, etal. (2009a)). Sensorial memory stores traces
that represent mental images of stimuli received by sensory receptors
of the body, including information regarding affects and emotion. It rep-
resents areas of the brain that synthesize auditory, visual, and somatic
information such as the cerebellum, reflex pathways, hippocampus,
amygdala, and prefrontal, limbic, and parieto-occipital-temporal cor-
tices. Symbolic memory stores higher-level representations of traces
in sensorial memory, i.e., symbols. It represents structures in the brain
such as areas of the hippocampus, the medial temporal lobe, Wer-
nicke’s and Broca's areas, and other areas of the frontal cortex. These
areas of the brain are associated with the capacity to symbolize, such as
with language, and they allow us to associate, for example, a verbal de-
scription, or maybe a melody or a painting with the visual sensation of
seeing an object or a view. The two memory modules are connected and
they interact, producing conscious and unconscious mental functioning.
Stimuli from sensory receptors activate the retrieval of a pattern in sen-
sorial memory that may become conscious, if it can trigger the access
of a trace in symbolic memory. If the retrieval of a memory trace in
sensorial memory can generate activity to access a pattern in symbolic
memory, it can become conscious.

A stimulus that generates access to a trace in sensorial memory
that does not, as a consequence, activate an access to a higher-order
representation in symbolic memory remains unconscious. This is in
agreement with Freud's discovery that repressed memories are those
that cannot be represented symbolically, thus enforcing the importance
of language in psychoanalytic treatment, and elucidating the fact that
neurotics cannot explain the causes of their neurotic acts. The compul-
sion to repeat by neurotics (Freud 1958; Freud 1966) is thus explained

in our model as a bodily response (an act) to a retrieval in sensorial
memory, which does not generate activity in symbolic memory, as that
which occurs in a reflex. The incapacity to symbolize, ie. to access
and generate higher-order representations (or meta-representations)
is represented in our model by weaker synaptic connections between
the sensorial and symbolic memory modules. The psychoanalytical
process of working-through then consists of reconfiguring and strength-
ening these inter-module connections. The relation of conscious and
unconscious mental functioning to the capacity to generate higher-
order representations has been described in the literature as higher
order thought theory (Cleeremans et al. 2007; Wedemann and Carvalho
2012). Our computational model consists of three basic algorithms: a
hierarchical clustering algorithm, a memory access mechanism, and a
working-through algorithm. The detailed description of these compo-
nent algorithms can be found in (Wedemann, Donangelo, et al. 2009a;
Siddiqui et al. 2018). We review here some of their basic and physically
relevant properties.

The hierarchical clustering algorithm is responsible for generating
the topological structure of each of the two neural network memory
modules. For the elaboration of this clustering algorithm, we considered
basic microscopic biological mechanisms, such as the on-center/off-
surround structure found in brain cells in many animals whereby a
neuron cooperates with other neurons in its immediate neighborhood
through excitatory synapses, whereas it competes with neurons that are
located further outside these surroundings (see Wedemann, Donangelo,
et al. (2009a) and references therein). Other basic mechanisms, such
as the fact that synaptic strengthening among neurons is promoted by
the simultaneous stimulation of the pair, as in Hebbian learning, have
also served as inspiration.

This self-organizing algorithm (Wedemann, Donangelo, et al. 2009a)
generates neuronal clusters, where a group of spatially close neurons
have a higher probability of being adjacent in the network’s graph, with
stronger synapses among pairs of these neurons. This also represents a
kind of preferential attachment mechanism with some conservation of
energy (neurosubstances) among neurons, controlling synaptic plastic-
ity and the formation of neuronal biological circuits also called maps.
The algorithm also simulates the storage of external stimuli received by
the network. As these competition-cooperation mechanisms are also
controlled by the environment, they constitute the way that the environ-
ment represents itself in the brain (Wedemann, Carvalho, and Donan-
gelo 2006a; Wedemann, Carvalho, and Donangelo 2006b; Wedemann,
de Carvalho, et al. 2008; Wedemann, Donangelo, et al. 2009a).

One of the main findings of our completely self-organizing hierarchi-
cal clustering algorithm is that the emergent structure of the networks
generated by this algorithm presents node degree distributions that
have asymptotic, power-law-like forms. These distributions deviate
significantly from Poisson distributions that would be present if the
connections were distributed in a random way and, besides indicating
structured organization of the network’s topology, they also suggest
that the study of these networks may benefit significantly from a de-
scription involving a nonextensive statistical mechanics, theoretical
framework (Tsallis 2023).

The memory access mechanism is based on the stochastic gener-
alization of the discrete Hopfield neural network model, called the
Boltzmann machine (Hertz et al. 1991) that is based on the Sherring-
ton—Kirkpatrick spin glass model. The network has IV nodes (neurons)
where each node 7 has a discrete state S; € {—1, 1} and functions as
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Symbolic Memory

Representation by
symbols, words

Medial Temporal Lobe
Hippocampus
Wernicke
Broca, etc...

Sensorial Memory

Unconscious

Amygdala
Reflex Pathways
Neocortex
Cerebelum, Striatum
Hippocampus, etc...

Figure 1: Memory structure with two modules, where one stores sensory input and the other stores symbolic representations. In sensorial memory

there are traces that can or cannot become conscious.

a McCulloch-Pitts neuron, so that its evolution equation is

Si(t+ 1) :=sgn (Z wi;S;i(t) — 91') ) (1
J

where 6; is the firing threshold and

1, ifz>0;

-1, ifz<0. @

i) = {
The synaptic weights w;; = w; that connect node ; and j are sym-
metric.
As a consequence of the symmetry of the weights, it is possible
to define an energy function, representing the potential energy corre-
sponding to the interactions between neurons,

B{S)) =~ 3 w55, o
ij

Stored memories then correspond to the minimum energy (stable)
states, which are attractors of the dynamics (1) in the memory retrieval
mechanism. The dynamics of the network follows a trajectory that
always goes downhill on the energy surface. Memory retrieval is then
achieved in the Boltzmann machine with a simulated annealing pro-
cess. The energy surface is sampled according to the Boltzmann-Gibbs
transition probability from state .S to .S’ which, for a temperature 7T, if
E(S’") > E(S),is given by

—(E(S") - E(S))

Ppa(S — S') =exp T

(4)

When E(S’) < E(S), transitions are always accepted.

Following the suggestion that we mentioned previously, that a de-
scription involving a nonextensive statistical mechanics may be advan-
tageous, we also implemented memory retrieval using Generalized

Simulated Annealing (GSA, Tsallis and Stariolo (1996)). In this case, the
transition probability, for a value of an entropic parameter g, is given by

PGSA(S — Sl) = ! . (5)

1
[1 +(q— 1)LE(S')T—E(S>} T

Thermostatistics and Memory Networks

The application of the maximum entropy principle to generalized,
non-standard entropic functionals is useful for the study of many com-
plex systems, including those investigated in the neurosciences and arti-
ficial intelligence (Al). These systems often exhibit probability distribu-
tions or densities that differ from the standard, exponential, Boltzmann-
Gibbs form. The generalized maximum S, entropy scheme generates
distributions that are consistent with power-law distributions frequently
observed in neuroscience, both in experimental research and in theo-
retical numerical studies (see Wedemann, Donangelo, et al. (200%a);
Siddiqui et al. (2018) and references therein).

For a probability density 7P(r), the power-law entropic functional

Sy is
-1
(;’)q _1]%, ©)

where ¢ is a real parameter called the entropic index, » € R, and P,
is a constant with the same dimensions as P(r). In the limit ¢ — 1,
the entropy S, becomes the standard Boltzmann-Gibbs (BG) entropy,

1

Sq[P] = ?q

Spg =851 = — / Pln(P/P.)dMr. (7)

The generalized thermostatistical formalism associated with the en-
tropic functional (6) is based on the optimization of (6), restricted by the
constraints of normalization and the mean value of an energy function
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/' PrydMr = 1, and /P(r)e(r) My =g, (8

The g-exponential canonical distribution (g-MaxEnt distribution),
[1-(1-q)&]™", forl—(1—¢q)% >0,
0, for1 — (1-¢)& <0,

£
P (_T) -
o)

results from the constrained optimization of the S, entropy (6). For g >
1, these g-exponential canonical distributions behave asymptotically
as power-laws and various complex systems that exhibit power-law
behavior are actually described by them.

There are indications that symbolic structures present in the mind,
such as language, may reveal correlations that follow distributions with
a power-law behavior. For example, Zipf's law for the frequency of
words (and communication signals in general) suggests that power-law
correlations occur in human language, and even in animal communica-
tion. Since we have found power laws in the quantities that characterize
the topologies generated by our clustering algorithm and in experimen-
tal data related to our studies (Wedemann, Donangelo, et al. 2009a;
Siddiqui et al. 2018), we have used GSA with the transition probability
(5) to implement our memory retrieval mechanism.

In the simulation experiments that we have conducted with our
model (Wedemann, Donangelo, et al. 2009a; Siddiqui et al. 2018;
Wedemann, Carvalho, and Donangelo 2011), we found that when mem-
oryis hierarchically structured, with both short and long-range synapses,
and memory functioning is processed with GSA, the neuronal system
should then be capable of making more distant associations among
stored memory traces, with more metaphors and creativity, than a sys-
tem governed by Boltzmann-Gibbs statistics. Values of the temperature
parameter 7" and entropic parameter ¢ regulate these capabilities, re-
flecting properties of the (biological) network, such as the availability of
neuromodulators and neurotransmitters. With GSA we were also able
to obtain a power-law-like asymptotic behavior for the propagation
of signals in the network that agree with experimental results showing
power laws for the propagation of signals in the brain (Siddiqui et al.
2018).

These findings have lead us to engage in the investigation of possi-
ble dynamical mechanisms that can generate generalized maximum
entropy distributions in memory neural networks (Wedemann and Plas-
tino 2016; Wedemann, Plastino, and Tsallis 2016; Wedemann and Plas-
tino 2017; Luca et al. 2018; Wedemann and Plastino 2019; Wedemann
and Plastino 2020; Wedemann and Plastino 2021; Wedemann and
Plastino 2023; Wedemann, Plastino, Tsallis, and Curado 2024; Luca
et al. 2025; Wedemann and Plastino 2026). We enumerate some of
these efforts in the following section.

The Fokker-Planck Formalism

It is possible to generalize the McCulloch-Pitts, discrete activation
neural model so that the output signal of a neuron i (in equilibrium) is
given by a continuous function. The Cohen-Grossberg general model
(Cohen and Grossberg 1983) describes a wide family of dynamical sys-
tems that are composed of co-evolving, interacting elements (neurons)
with continuous state variables, and a particular instance is the contin-
uous Hop[eld, associative memory, neural network model (Hopfield
1984).

When studying complex dynamical systems with many elements,
each described by a continuous state variable, such as a neural network
with IV neurons where each one has a continuous activation repre-
sented by z;, instead of following the evolution of a single instance
of the system, it is often more feasible to consider the time evolu-
tion of a statistical ensemble of identical copies of the system with
different initial conditions. This ensemble can then be described by
a time-dependent probability density in N-dimensional phase space

P(z1,...,xN,t), that,in the presence of noise, evolves according to
a Fokker—Planck equation (FPE)

0

al; — DV?P -V -[KP], (10)

where P = P(z,t),z € RY, K € R" is called the drift field
and D is a constant diffusion coefficient (see Wedemann, Plastino, and
Tsallis (2016) and references therein).

Physical systems characterized by features such as inhomogeneity,
spatial disorder, long-range interactions, overdamped dynamics and
certain asymmetries may require a more general setting than the FPE,
given by the nonlinear Fokker—Planck equation (NLFPE, Ribeiro et al.
(2011)). Indeed complex systems with such characteristics frequently
exhibit g-exponential canonical (¢-MaxEnt) distributions. The com-
plex system community has thus, in recent years, conducted intense
research efforts into investigating diverse aspects of evolution equa-
tions including nonlinear difusion terms, such as the NLFPEs, and their
applications to various problems in physics, biology and other fields
(Ribeiro et al. 2011; Wedemann, Plastino, and Tsallis 2016; Luca et al.
2025; Lucchi et al. 2026).

We have thus used the nonlinear Fokker—Planck equation (NLFPE)
with the form

oP

— = DV?[P* 1 -V .[KP],

T (1)

and also some other variant, similar forms to study artificial memory
neural networks which may deviate from the linear description. As we
are interested in retrieving stored memory states of these networks, we
search for possible stationary solutions to Eq.(11), which correspond to
attractor states of the network’s dynamics. We have found in our models
that stationary states of NLFPEs describing our model networks have the
form of g-exponential canonical distributions (Wedemann and Plastino
2016; Wedemann, Plastino, and Tsallis 2016; Wedemann and Plastino
2017; Luca et al. 2018; Wedemann and Plastino 2019; Wedemann and
Plastino 2020; Wedemann and Plastino 2021; Wedemann and Plastino
2023; Luca et al. 2025; Wedemann and Plastino 2026).

As a notable example of these modeling efforts with the NLFPE,
we have treated asymmetries in synaptic connections by considering
a drift term in the NLFPE that does not arise from the gradient of a
potential V, K # — V'V, and therefore K is a curl force (Wedemann
and Plastino 2016; Wedemann, Plastino, and Tsallis 2016; Luca et al.
2018; Luca et al. 2025). In this case, the numerical solution for an
instance of the NLFPE for two interconnected neurons shows that the
activation functions of the two neurons spiral into limit cycles so that,
in a stationary equilibrium condition, the attractor states correspond
to a situation where the activation values of the two neurons rotate in
the phase-space plane (1, x5 ), following an elliptical orbit (Luca et al.
2018; Luca et al. 2025). The emergence of these limit cycles indicates
an important expression of the new types of dynamics that may arise
from the asymmetric interactions.
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Conclusion

Our schematic model for the neuroses illustrates how the ideas of
Freud regarding the unconscious mind indicate that language, symbolic
representations and meaning are essential for the emergence of con-
scious experience. In neurotic behavior, the subject is strongly attracted,
by an associative memory mechanism (as in an attentional mechanism),
to repressed or traumatic memories that determine his acts, of which he
has no consciousness. In order to be conscious of an attended stimulus,
a subject should be capable of reporting, by creating and associating
meta-representations (abstract symbols) to sensory information.

Power-law-like distributions are observed in neuroscience, both in
numerical simulations and in experimental observations. We have
modeled continuous neural networks for associative memory using
NLFP equations that present stationary solutions of the g-MaxEnt form.
These g-exponential canonical distributions have asymptotic power-
law-like behavior that correspond to attractor states in neuronal circuits
and should account for the greater capacity to associate of the networks
based on generalized statistical mechanics, when compared to those
based on standard Boltzmann-Gibbs statistics.

We hope that this review will stimulate the curiosity of other re-
searchers who may contribute to the many open issues related to these
topics that still need to be explored. In this regard, any further develop-
ments will be very welcome.
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