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Topological Neural Coding*
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Abstract
Understanding the neural representation of complex cognitive activ-

ities, such as processing algebraic or topological structures like graphs,3

groups, and knots, is a fundamental challenge in cognitive neuroscience.
This study explores how associative matrix memories, as mesoscopic
models, bridge symbolic data processing with dynamic neuronal activ-6

ity. We demonstrate that these memories naturally represent graphs of
associations between concepts and extend this framework to encode
finite groups via their Cayley graphs and knots through tensor product9

representations. For knots, wepropose a context-dependent associative
memory matrix that captures crossing states in knot diagrams, linking
Gauss codes to Seifert circles and aiding knot classification. These rep-12

resentations provide a unified neural framework for encoding diverse
topological objects, offering insights into the brain’s ability to process
abstract mathematical structures.15
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graphs, groups, knots.18

Introduction
A theory of cognitionmust account for the neuronal representation of

all cognitive activity. When our minds consider algebraic or topological21

structures, such as graphs, groups, or knots, how are they represented
in our brain from a neurocognitive perspective? What is the neural
encoding of these cognitive activities?24

According to the current paradigm of cognitive neuroscience, percep-
tion, thought, memory or any cognitive function correspond to configu-
rations of activity of large neuronal groups that integrate distributed27

circuits of interconnected brain areas. Associative matrix memories
are classical mathematical models of cognitive brain activity that fit
perfectly into this scenario of brain functionality (Kohonen 1977). They30

are mesoscopic models that link the level of algorithms operating with
complex symbolic data with the underlying dynamic neuronal level. In
these models, symbolic expressions and operations are represented by33

states and transformations in abstract vector spaces (Graben and Pot-
thast 2009). The activity patterns of large neuronal groups distributed
throughout the brain are mapped onto vectors. The basic activity of36
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any group of neurons is modeled as associations between the configu-
ration of activity reaching the neuronal group (an input vector f) and the
pattern of neuronal activity with which this group of neurons responds 39

to its input (an output vector g). These associations between vectors
representing cognitive states are realized by matrix memories whose
coefficients are real numbers attributed to synaptic strength (Anderson 42

1995). Assuming quasi-orthogonality for distinguishable patterns and
Hebbian synapses, these matrix memories assume the simple outer
product rule: 45

M =

N∑
i=1

gif>i (1)

Context-dependent associative memories, endowed with tensor
product representation for input compositionality allows for adaptive
associations (Mizraji 1989; Pomi-Brea and Mizraji 1999), becoming a 48

powerful neural tool to overcome the divorce between symbolicmodels
and neural networks.

E =
∑
i

∑
j

gij(pij ⊗ fi)> (2)

The great advantage of this approach is that it preserves the linear al- 51

gebra representation, which allowsmathematical operations to advance
an algebraic theory of cognition (Mizraji 2008; Graben and Potthast
2009). 54

In this communication, we present a research program that seeks to
find neural representations of the abstract, algebraic, and topological
structures of mathematics within the framework of context-dependent 57

associative memories, and we show how the tensor product acts as a
structuring element of the space. First, we show how matrix associative
memories naturally support a graph representation of their stored se- 60

mantic structure. Then, we present a possible neural representation of
mathematical group structures based on associative memory models
that store finite groups through their Cayley graphs. After reviewing 63

these results, we introduce here a neural representation of knots within
the framework of this theory.

Graphs of Associations 66

Human memory is inherently associative, with its semantic content
represented by psychologists as graphs since the 1960s (Spitzer 1999).
The question arises: how does the brain support these structures? We 69

have demonstrated that associative matrix memories naturally repre-
sent graphs of associations between concepts (Pomi and Mizraji 2004).
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When concepts are encoded in the neural domain by approximately72

orthogonal vectors, the adjacencymatrix of the association graph, A(Γ),
is the same neural memory (denotedMw) when encoded in the stan-
dard basis (Me). Hence, these two matrices are similar, sharing the75

same spectrum of eigenvalues: {λ(Mw)} = {λ(Me)}, where Me

is a block matrix with A(Γ) in the upper left diagonal block and ze-
ros elsewhere. In the reduced space with the dimension of the num-78

ber of concepts in the memory, and k the number of associations,
Me =

∑k
i=1 eieij> = A(Γ)>. The associative graph and its spec-

trumare code-invariant properties of thememory. For context-sensitive81

associations, a multidigraph is formed, where specific contexts select
subgraphs of associations active under that context.
These findings imply that, without knowing the precise neural vector84

coding or its dimension for each concept in an individual brain, explor-
ing the associations contained in memory can reveal the structure of
its association graph. Since the adjacency matrix of the graph is sim-87

ilar to the neural memory matrix, we gain access to the spectrum of
eigenvalues of the real, yet unknown, neural memory! This opens the
possibility of modifying cognitive dynamics through targeted modifica-90

tions to the graph, enabling a form of cognitive engineering or scientific
psychotherapy.

Associative Memories Encoding Groups93

Groups, as mathematical structures, underpin diverse aspects of
nature, including notions of beauty and symmetry. Beyond their multi-
plication tables, finite groups can be uniquely characterized through a96

presentation and its associated Cayley graph. LetG be a group and S a
set of its elements. If ‘all’ elements ofG can be expressed as products
of elements inS and their inverses, the elements ofS are termed gener-99

ators ofG. For a groupG with generating set S , the Cayley color graph
is constructed as follows: each element gi ∈ G is assigned a vertex vi,
and each generator si ∈ S is assigned a color ci. Then, there is a di-102

rected edge of color ci connecting v1 to v2 if g2 = g1 ·si. Closedwalks
within the graph correspond to relations defined on the generating set,
where a relation is a word that evaluates to the identity element inG.105

The characterization of a finite group by its generators and a minimal
set of relations, sufficient to imply all relations in G, is called a pre-
sentation of the group. We have proposed a novel context-dependent108

associative matrix for representing groups, capturing their structure in
a neural framework (Pomi 2016): E =

∑
k

∑
i g′i(k)(gi ⊗ sk)>. By

coding the elements of the group with vectors of the standard basis,111

we obtain the expression E =
∑

s∈S A(Γs)⊗ s> , where the action
of the context vectors s (generators) is to dissect the monochromatic
subgraphs Γs of the Cayley graph. The adjacency matrices of these114

monochromatic subgraphs store the transitions between elements of
the group under the action of each generator. These matrices that rep-
resent generators are permutation matrices with the same dimension117

of the order of the group. Group theorists know this faithful matrix
representation of a group as its regular representation. These adjacency
matrices generate the other elements by fulfilling the defining relations120

of the presentation of the group.

A Neural Representation of Knots
Knots are immersions of simple closed curves inR3, and their graphic123

representation is usually achieved by projection onto the plane. The
mathematical theory of knots is framed within topology and has un-
dergone intense and interesting development over the last fifty years126

Figure 1: Diagram of the Trefoil knot and its associative matrixM(31)
coded in the canonical basis according to equation 4. Note that the 1s
in the matrix are disposed in the antidiagonal blocks, corresponding to
the adjacency matrix of a bipartite graph between the set of three Over
vertices and the set of three Under ones.

(Adams 1994). Links have been established between knot theory and
groups, graphs and braids, among other areas, as well as deep relation-
ships with several fields of fundamental physics (Kauffman 2001). 129

In this communication, we represent a knot as a context-dependent
associative memory matrix, a mathematical object originating within
the theory of information processing in neural systems. We use a tensor- 132

product representation for each position in a knot diagram, defined by
a state (Over or Under) at each crossing, with itsN crossings and the
two states represented by orthonormal basis vectors. Given a crossing 135

xi and a state sj , a position is encoded by the tensor product sj ⊗ xi,
where xi are the vectors embedding the crossings and sj are those
embedding the states. The associative matrix M(K) of a knot diagram 138

(Pomi 2013) stores transitions between the 2N successive positions in
a given orientation of the knot and is defined as

M(K) =

N∑
i=1

2∑
j=1

(s′ij ⊗ x′ij)(sj ⊗ xi)> (3)

where sj , s′ij ∈ R2 and xi, x′ij ∈ RN are all vectors belonging 141

to their respective orthonormal bases, andM(K) is a square matrix
of dimensions 2N × 2N . When the orthonormal vectors belong to
the canonical basis, e1 = [1, 0, . . . , 0]>, e2 = [0, 1, . . . , 0]>, . . . 144

represent crossings xi, and O = [1, 0]>, U = [0, 1]> for states si
(Over andUnder), the associativematrix becomes a permutationmatrix.
As an illustration, let us write the associative matrix for a minimal 147

oriented diagram of the Trefoil knot (31):

M(31) = (U⊗ e2)(O⊗ e1)> + (O⊗ e3)(U⊗ e2)>

+ (U⊗ e1)(O⊗ e3)> + (O⊗ e2)(U⊗ e1)>

+ (U⊗ e3)(O⊗ e2)> + (O⊗ e1)(U⊗ e3)> (4)

See the diagram of the Trefoil and the matrix coded in the canonical
basis in Figure 1. 150

When presented with an arbitrary position (sj ⊗ xi), the matrix
memory retrieves the tensor composition representing the next po-
sition (crossing and state), given the orientation of the knot diagram. 153

Reinjecting this output as a new entry, the associative matrix of the
knot yields, in a successive manner, all the positions of the oriented
diagram until the completion of the tour. Hence, the matrixM stores 156

all the information needed to rebuild the knot. Renaming the tensor
compositions according to the state and crossing number, for example
O⊗e1 ≡ O1, we obtainO1U2O3U1O2U3O1 . . . , which is the 159
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Gauss code of the Trefoil knot, withO1,U2, . . . being referred to as
letters.
This matrixM(K), a permutation matrix with twice the dimension162

of the crossing number, is structured in four square blocks, two “diag-
onal” matrices of dimensionN × N , corresponding to O − O and
U −U transitions, and two “antidiagonal” corresponding to alternating165

transitionsU −O andO − U :

M(K) = UO> ⊗
∑
i

xi+1x>i + OU> ⊗
∑
j

xj+1x>j

+ UU> ⊗
∑
h

xh+1x>h + OO> ⊗
∑
k

xk+1x>k (5)

When the knot is of alternating type, it corresponds to the adjacency
matrix of a bipartite graph between the set ofN Over vertices and the168

set ofN Under ones (see Figure 1).
From any diagram, a set of circles, called Seifert circles, can be ob-

tained by eliminating the crossings (Murasugi 1996). For alternating171

knots, the anti-diagonal submatrices also represent the Seifert circles
of the knot; for non-alternating diagrams, Seifert circles partially coin-
cide with the matrices (Bosch 2019). Thus, this associative matrix of a174

knot creates a link between its Gauss code and the Seifert circles, and
provides certain tools for knot classification. In particular, an advanced
representation, making use of the adjacency matrix of the “Gauss dia-177

gram” (Polyak and Viro 1994), can distinguish between the two Trefoil
knots, as was demonstrated by Bosch (2019).

Conclusion180

Context-sensitive associative memories are capable of displaying
elegant and interrelated neural representations of different topological
objects, such as graphs, finite groups, and knots. These results are183

promising for the consolidation of this type of vector model of neural
states as a universal algebraic representation of cognition, extendable
to other products of human culture.186
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