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Abstract
This work investigates the collective behavior of neuronal popula-

tions through a stochastic multi-agent framework that models neurons3

as particles subject to noise in both the membrane voltage evolution
and the interactions between neurons. Employing tools from stochastic
calculus and measure theory, the study derives macroscopic equations6

that describe the mean-field dynamics of the system. These approxi-
mations enable a rigorous characterization of large-scale neural activity,
including conditions for synchronization and stability in the presence of9

noise. Themathematical formulation is highly general, can be grounded
in biologically plausible assumptions to offer insights into how local
fluctuations can influence global patterns of brain dynamics. Potential12

applications include modeling cortical connectivity and analyzing neu-
ral variability observed in neuroimaging data. This approach establishes
a formal link between microscopic neuronal interactions and emergent15

macroscopic behavior, providing a valuable analytical tool for theoreti-
cal neuroscience and the study of brain function under uncertainty.
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Introduction21

Starting from the seminal paper by Lapicque (Abbott 1999; Brunel
and Rossum 2007), models of single neuron cells, seen as RC circuits,
have spread and evolved over the century. Conductance-based mod-24

els are biophysical representations of nerve cells, and the equations
describing these models capture the generation of action potentials
by focusing on the temporal dynamics of ion channels across the cell27

membrane. Prominent examples include the Hodgkin–Huxley model
and the FitzHugh–Nagumo model and Morris–Lecar model. These
models are nonlinear and biologically accurate, but their exact math-30

ematical analysis is highly complex (Greenwood and Ward 2016). In
parallel with the development of biophysical models, the introduction
in linear models of sources of stochasticity, such as Poissonian inputs,33

has allowed researchers to study the overall behavior of the mem-
brane potential without having to observe the dynamics of individual
ion channels (Stein 1965; Tuckwell 1989). These models, often of the36
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leaky integrate-and-fire type, were later made more mathematically
tractable through diffusive approximations of the equations describing
the temporal evolution of the membrane potential (Buonocore et al. 39

2010; Lánský 1984; Sacerdote and Giraudo 2013). At the same time,
the aim of adding increasingly realistic biological features led to the
development ofmore specificmodels, incorporating aspects such as the 42

refractory period, inhibitory and excitatory reversal potentials (Lánská
et al. 1994), and various types of synaptic connections (with weights
also modeled as random variables in models with random synaptic 45

weights (Grazieschi et al. 2019)). Moreover, to include the geometry
of the neuron, which is usually assumed point-like, and to overcome
certain limitations of diffusive approximations, jump-diffusion models 48

have been proposed (Sirovich et al. 2013). Someof themost challenging
issues involve incorporating adaptation and synchronization phenom-
ena, typically associated with population models, into single neuron 51

equations (Kobayashi et al. 2009). To regain mathematical tractability
within these sophisticated models and in general nonlinear models,
techniques such as averaging are often necessary. However, this comes 54

with the risk of overlooking second-order phenomena (Ascione and
D’Onofrio 2023).
To describe collective phenomena, systems of stochastic differential 57

equations have been considered, in which the equations represent ei-
ther sub-populations or individual units, which can make single-neuron
models appear increasingly obsolete. Mean-field models take the ap- 60

proach of considering systems of equations for entire populations, but
by reducing the dynamics to those of the mean field in the limit of a
large number of agents, they ultimately allow for the study of a pro- 63

totypical neuron’s equation; effectively returning to the analysis of
single-neuron dynamics (La Camera 2021). Traditional approaches to
large neuronal networks often rely on diffusion approximations, which 66

assume high-frequency, low-amplitude inputs. In contrast, mean-field
theory provides a robust framework to analyze such systems without
these assumptions, effectively reducing complex dynamics to a few key 69

macroscopic parameters, such as firing rates.
In this framework, in (D’Onofrio and Melchor Hernandez 2025) we

adapt multi-agent models that are typically used for simulating the 72

actions and interactions of autonomous agents in crowds or leader–fol-
lower dynamics, to the context of neural modeling. We study a multi-
population system inwhich the dynamics of each agent are governed by 75

a systemof stochastic differential equationswithin a general framework,
driven by the collective state of the system. Each agent is associated
with a probability measure that serves as a dynamic label, indicating 78

the population to which it belongs. We make no assumption of prior
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knowledge about these labels, and we allow them to evolve as a result
of interactions among agents. The system is further influenced by noise,81

affecting both the agents’ positions and their labels.

Model
We first establish the well-posedness of the system and then inves-84

tigate its mean-field limit as the number of agents tends to infinity and
we analyze the properties of the resulting limit distribution.
Such models are traditionally applied to leader-follower dynamics,87

consensus formation, and control theory. Here, we propose a novel in-
terpretation: modeling a network of interacting neurons whose synaptic
weights, that describe the influence that a neuron has onto the oth-90

ers, follow a certain distribution in the spirit of neuronal networks with
random synaptic weights.
The model falls within the class of noisy integrate-and-fire systems93

and is given by:


Xi(t) = Xi

0 +
∫ t

0
vΛN

s
(Xi(s), λi(s))ds+

√
2σBi

t,

ifXi(t−) < XF ,
Xi(t) = XR, ifXi(t−) = XF , ,

λi(t) = λi
0 +

∫ t

0
TΛN

s
(Xi(s), λi(s))ds

(1)

where the stochastic process Xi describes the time evolution of
the membrane potential of a neuron receiving the inputs from the96

other neurons in the network it is embedded in. These contributions
are summarized in the drift part of (1) according to the velocity field
vΛN

s
until the membrane potential reaches a physiological valueXF99

triggering a spike. As a result of this spike, which is assumed to occur
instantaneously, the membrane potential of all the other connected
neurons receives a contribution. Afterward, the dynamics of the spiking102

neuron restart from the resting stateXR . The strength of the interaction
between neurons and its evolution are described through a general
operator TΛN

t
that is perturbed by a random effect of the environment,105

being it dependent onXi and has the following form:

T (Xi(t), λi(t)) =
1

N

∑
k≥1

N∑
i=1

βkα(uk, X
i(t), λi(t)),

where β and α can be deterministic or stochastic according to
the modeling purposes. This general formulation encompasses108

classical models with random synaptic weights as special cases.
All quantities in (1) depend on ΛN

t that is the empirical measure
1
N

∑N
i=1 δ(Xi(t),λi(t)).111

Discussion
This framework offers a flexible and mathematically rigorous ap-

proach to modeling complex interacting systems with evolving inter-114

nal states, while preserving the tractability of single-neuron models.
It opens avenues for studying emergent behavior in heterogeneous,
noise-driven populations. The dependence of v on the stateXi fol-117

lows the principles of integrate-and-fire neuronal models with reversal
potentials. The dependence of v on λi, on the other hand, accounts
for the different synaptic connections among neurons and could also120

include both inhibitory and excitatory contributions. Finally, the depen-
dence of the whole dynamics on the empirical measureΛ, which in this
case represents the distribution of membrane potential values, can be 123

used to model phenomena such as collective behavior, bursting, and
avalanches, to name a few.
An open problem remains the analysis of the system for a large but 126

finite number of agents, in order to determine whether the properties
and terms preserved in the limiting case are indeed those that are
biologically relevant (Helias et al. 2014). 129

Citation
Brainiacs 2025 Volume 6 Issue 1 Edoc F51497339
Title: “A Noisy Multi-Agent Framework for the Dynamics of Interacting 132

Neurons”
Authors: Giuseppe D’Onofrio
Dates: created 2025-05-01, presented 2025-06-02, published 135

2025-07-27,
Copyright: © 2025 Brain Health Alliance
Contact: giuseppe.donofrio@polito.it 138

URL: BrainiacsJournal.org/arc/pub/DOnofrio2025NMAFDIN
PDP: /Nexus/Brainiacs/DOnofrio2025NMAFDIN
DOI: /10.48085/F51497339 141

Affiliations
Name, email; Affiliation. 144

Giuseppe D’Onofrio, giuseppe.donofrio@polito.it; Dipartimento di
Scienze Matematiche, Politecnico di Torino, Italy.

References 147

[1] L. F. Abbott. “Lapicque’s introduction of the integrate-and-fire model
neuron (1907).” Brain Research Bulletin 50.5-6 (1999), pp. 303–304
(cited p. 1). 150

[2] G. Ascione and G. D’Onofrio. “Deterministic Control of SDEs with
Stochastic Drift and Multiplicative Noise: A Variational Approach.” Ap-
plied Mathematics and Optimization 88 (2023), p. 11 (cited p. 1). 153

[3] N. Brunel and M. C. W. van Rossum. “Lapicque’s 1907 paper: from frogs
to integrate-and-fire.” Biological Cybernetics 97 (2007), pp. 337–339
(cited p. 1). 156

[4] A. Buonocore, L. Caputo, E. Pirozzi, and L. M. Ricciardi. “On a stochastic
leaky integrate-and-fire neuronal model.” Neural Computation 22.10
(2010), pp. 2558–2585 (cited p. 1). 159

[5] G. D’Onofrio and A. Melchor Hernandez. A largemulti-agent systemwith
noise both in position and control. arXiv:2503.10543 [math.PR]. 2025
(cited p. 1). 162

[6] P. Grazieschi, M. Leocata, C. Mascart, J. Chevallier, F. Delarue, and E.
Tanré. “Network of interacting neurons with random synaptic weights.”
ESAIM: Proceedings and Surveys 65 (2019), pp. 445–475 (cited p. 1). 165

[7] P. E. Greenwood and L. M. Ward. Stochastic neuron models. Vol. 1. New
York: Springer, 2016 (cited p. 1).

[8] M. Helias, T. Tetzlaff, andM. Diesmann. “The Correlation Structure of Lo- 168

cal Neuronal Networks Intrinsically Results from Recurrent Dynamics.”
PLOS Computational Biology 10.1 (2014), e1003428 (cited p. 2).

[9] R. Kobayashi, Y. Tsubo, and S. Shinomoto. “Made-to-order spiking neu- 171

ron model equipped with a multi-timescale adaptive threshold.” Fron-
tiers in Computational Neuroscience 3 (2009), p. 762 (cited p. 1).

6.1.F51497339 BrainiacsJournal.org/arc/pub/DOnofrio2025NMAFDIN © 2025 BHA

mailto:giuseppe.donofrio@polito.it
https://www.BrainiacsJournal.org/arc/pub/DOnofrio2025NMAFDIN
https://npds.PORTALDOORS.org/Nexus/Brainiacs/DOnofrio2025NMAFDIN
https://doi.org/10.48085/F51497339
mailto:giuseppe.donofrio@polito.it
https://www.BrainiacsJournal.org/arc/pub/DOnofrio2025NMAFDIN


rev
iew

op
en

D’Onofrio Noisy Multi-Agent Model of Interacting Neurons 3 of 3

[10] G. La Camera. “The mean field approach for populations of spiking174

neurons.” In:ComputationalModelling of theBrain:Modelling Approaches
to Cells, Circuits and Networks. Cham: Springer International Publishing,
2021, pp. 125–157 (cited p. 1).177

[11] V. Lánská, P. Lánský, and C. E. Smith. “Synaptic transmission in a dif-
fusion model for neural activity.” Journal of Theoretical Biology 166.4
(1994), pp. 393–406 (cited p. 1).180

[12] P. Lánský. “On approximations of Stein’s neuronal model.” Journal of
Theoretical Biology 107.4 (1984), pp. 631–647 (cited p. 1).

[13] L. Sacerdote and M. T. Giraudo. “Stochastic integrate and fire models: a183

review on mathematical methods and their applications.” In: Stochastic
Biomathematical Models: With Applications to Neuronal Modeling. 2013,
pp. 99–148 (cited p. 1).186

[14] R. Sirovich, L. Sacerdote, and A. E. Villa. “Cooperative behavior in a jump
diffusion model for a simple network of spiking neurons.”Mathematical
Biosciences & Engineering 11.2 (2013), pp. 385–401 (cited p. 1).189

[15] R. B. Stein. “A theoretical analysis of neuronal variability.” Biophysical
Journal 5.2 (1965), pp. 173–194 (cited p. 1).

[16] H. C. Tuckwell. Stochastic Processes in the Neurosciences. Society for192

Industrial and Applied Mathematics, 1989 (cited p. 1).

6.1.F51497339 Brainiacs Journal of Brain Imaging And Computing Sciences © 2025 BHA


	Introduction
	Model
	Discussion
	Citation
	Affiliations
	References

