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Abstract
Multiverse analysis aims to enhance the robustness and replicability

of scientific findings by testing research hypotheses through multiple,3

well-justified analysis pipelines. However, the multiverse of pipelines
is often large making exhaustive evaluation computationally infeasi-
ble. Thus, a key goal is to approximate the multiverse by sampling6

a manageable number of pipelines for robustness analysis. For such
an approximation, it is necessary to quantify the similarity between
analysis pipelines and guide pipeline sampling by these similarities. To9

this end, we first used meta-analytic data from Kristanto et al. (2024)
on fMRI processing pipelines collected from a representative set of
papers. Using this meta-analytic data, we propose a Graph Convo-12

lutional Network (GCN)-based approach combined with Deep Graph
Infomax (DGI) to assess pipeline similarity. Graph-based embeddings
were computed using unsupervised learning and subsequently used15

to derive pipeline features. Pipeline similarity was then quantified via
Euclidean distance. Traditional similarity measures, namely Jaccard,
Hamming and Levenshtein distances were also computed based on18

the meta-analytic data for comparison. Clustering analysis revealed
consistency across the GCN, Hamming, and Levenshteinmeasures. Sim-
ilarity measures based on Hamming and Levenshtein distances treated21

all processing steps identically, thus biasing them towards pipelines
with identical step lengths. In contrast, the GCN-based measure gen-
erated distinct features for each step, allowing each to contribute dif-24

ferently to the pipeline similarity measure. Second, we compared the
meta-analytically derived pipeline similarity measures with similarity
measures obtained frommultiverse analysis conducted on empirical27

data using resting-state fMRI measures from the Human Connectome
Project. The comparison showed satisfactory results for the proposed
approach, which aims to replace empirical similarity with meta-analytic30

similarity estimates for computationally efficient multiverse analysis in
graph-theoretic fMRI research. These findings will inform future studies
aimed at validating meta-analytic pipeline similarity measures based33

on empirical similarity estimates, providing a solid basis for the devel-
opment of computationally feasible and valid multiverse analyses.

*Presented 2024-10-09 at Guardians 2024 with slides and video.
†Correspondence to micha.burkhardt@uol.de.
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Figure 1: Pipeline Data: 220 graph analytical fMRI preprocessing/analysis pipelines were derived from literature. In total, these pipelines contain
61 distinct analysis steps, which can be grouped into six conceptual categories: Analysis software, structural preprocessing, functional

preprocessing, noise removal, functional connectivity estimation, and network analysis.

Introduction
In many fields of computational science, researchers face a plethora66

of arbitrary yet defensible decisions when designing studies and
analysing data. Given this multiplicity of decisions, also known as the
many researcher’s degrees of freedom, particular choices can inadver-69

tently introduce bias and contribute to the ongoing replication crisis
in science (Simmons et al. 2011). This issue is particularly pronounced
in cognitive neuroscience, where the complexity of neuroimaging data72

requires extensive preprocessing and analysis pipelines to handle the
inherent noise and complexity of the data (Kristanto et al. 2024). Conse-
quently, methodological choices were shown to impact the robustness75

of results (Botvinik-Nezer et al. 2020), highlighting the need for more
thorough data analysis practices.
In light of these challenges, there have been increasing calls to ad-78

dress the robustness of findings in scientific research (Open-Science-
Collaboration 2015; Frias-Navarro et al. 2020), and to prioritize statisti-
cal replicability over narrative appeal (Huber et al. 2019). Rather than81

only reporting a subset of the findings in line with a planned story, re-
searchers are urged to prioritize transparency, replicability, andmethod-
ological rigor to improve the credibility of findings. This shift in focus is84

critical for advancing the field, ensuring that results are not only com-
pelling but also robust.
Towards such a shift, multiverse analysis has recently been proposed87

as an approach to enhance the robustness of research findings (Stee-
gen et al. 2016; Del Giudice and Gangestad 2021). In contrast to just
performing (and reporting) a single analysis, multiverse analysis in-90

volves running statistical tests over a wide range of specifications. This
approach not only reveals whether different specifications lead to sim-
ilar results but also offers exploratory insights. For instance, hidden93

structures in the data could include patterns such as latent clusters, non-
linear relationships, or variable interactions that become visible only
under certain analytical choices. Additionally, the methods analysed96

may reveal clusters depending on the characteristics of the data, such

as sensitivity to noise or differences in model assumptions. However,
implementing multiverse analysis can be computationally expensive, 99

especially in fields like neuroimaging research, where a vast number of
analytical decisions are available. To address this challenge, a recent
study proposed an active learning approach for multiverse analysis 102

(Dafflon et al. 2022). This approach creates a search space of pipelines
by running all analysis pipelines on a subset of the data and quantifies
their similarity based on the outputs (e.g., graphmeasures derived from 105

fMRI data). An active learning algorithm then samples and tests a small
subset of pipelines from the search space. Specifically, the algorithm
uses these samples to model associations between pipeline features 108

such as analytical decisions, and research outcomes (e.g., predicting
cognitive scores from brain data). This allows the algorithm to infer out-
comes for the remaining pipelines in the search space without running 111

them.
While promising, this method has limitations. For example, con-

structing the search space requires running all pipelines on a subset of 114

the data, which may be computationally infeasible for large pipeline
spaces. In addition, the same data cannot be used to construct the
search space and test hypotheses without introducing bias due to circu- 117

lar analysis strategies. Thus, when the sample size is small, loss of data
for the main analysis becomes a problem, reducing statistical power.
Developing alternative methods to construct the search space with- 120

out these limitations is therefore a key focus for multiverse analysis
research, especially in computationally intensive fields or when large
samples are unavailable. 123

Related research has also sought to address the issue of low robust-
ness and replicability with neuroimaging pipelines. For example, almost
two decades ago, Strother (2006) already highlighted that inconsis- 126

tencies in testing environments and performance metrics hinder the
generalisability of findings, and advocated for balanced approaches that
not only evaluate isolated analytical steps but also the entire pipeline. 129

More recently, studies such as Bowring et al. (2022) and Luppi et al.
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(2024) have systematically evaluated sources of variability and bench-
marked pipeline performance to enhance consistency and robustness132

in neuroimaging research. However, as the active learning approach,
thesemethods require running all pipelines on the data of a given study,
which is computationally intensive. This limitation becomes particu-135

larly problematic for multiverse analyses involving large numbers of
pipelines, where computational feasibility is a key concern.
To overcome these limitations, we propose replacing the computa-138

tionally expensive and data-intensive process of constructing a search
space of pipelines with a similarity measure based on the configuration
of the analysis pipelines as used in the literature. Instead of running141

pipelines on subsets of data, this approach uses information about the
analysis steps and pipeline similarities based on how they are used
and reported in the literature for addressing similar research questions.144

In this context, the ’configuration’ of a pipeline refers to the sequence
and specific choices of analysis steps that constitute the pipeline, such
as preprocessing, feature extraction, and statistical modeling. Step-147

based pipeline similarity derived frommeta-analytic data has garnered
attention as a way to streamline multiverse analyses and integrate re-
sults efficiently. For instance, it has been suggested that the number of150

pipelines in a multiverse analysis could be reduced by grouping similar
ones, based on the assumption that similar pipelines produce simi-
lar outcomes (Cantone and Tomaselli 2024). However, whether this153

assumption holds true remains an empirical question, as individual
analysis steps can decisively alter the data.
Traditional similarity measures used for sequences, such as Jaccard,156

Hamming, and Levenshtein distances, each have specific strengths and
limitations in assessing the similarity of pipelines effectively (Jaccard
1901; Hamming 1950; Levenshtein 1966). For example, Hamming dis-159

tance detects localised differences by counting mismatches at corre-
sponding positions. Levenshtein distance accounts for edits like substi-
tutions, insertions, and deletions, making it more flexible, but it treats162

steps as isolated and ignores their relationships. Jaccard similarity mea-
sures overlap between sets of elements but disregards the order and
structure of sequences. Thus, while these measures are effective for165

identifying differences or shared components, they might fail to cap-
ture the broader, structural relationships that often define processing
pipelines as they are not just linear sequences but represent intercon-168

nected processes where the order and interdependence of steps carry
significantmeaning. Traditional similaritymeasures overlook this global
context, making them less effective for accurately comparing pipelines171

in complex domains like fMRI data processing.
Building on these efforts, we introduce a novel method for assessing

pipeline similarity using a Graph Convolutional Neural Network (GCN)174

combined with Deep Graph Infomax (DGI; Veličković et al. (2018)).
Our approach generates graph-based embeddings to capture the re-
lationships between processing steps across entire pipelines by using177

meta-analytic data indicating how frequently the pipelines are used
in the literature. These embeddings are concatenated to form feature
representations of pipelines, enabling similarity measurement based180

on Euclidean distance. Unlike traditional measures, this approach ac-
counts for the structural and contextual relationships between pro-
cessing steps. We applied this approach to a meta-analytic dataset183

of 220 fMRI analysis pipelines derived from the literature (Kristanto
et al. 2024), estimating their similarity by using features such as the
frequency and order of processing steps. To evaluate our approach, we186

compared the GCN-based similarity measure with traditional measures
(Jaccard, Hamming, and Levenshtein distances). We analysed the be-

havior of thesemeasures and highlighted their differences in the context 189

of comparing fMRI processing pipelines. Additionally, we conducted
an empirical multiverse analysis using data from 100 participants of
the Human Connectome Project (HCP; Van Essen et al. (2013)). This 192

allowed us to benchmark the GCN approach against empirical results,
demonstrating that the GCN-based similarity measure shows promis-
ing results by capturing some (but not all) patterns in the data. The 195

present study thus highlights the potential of GCN-basedmeta-analytic
similarity measures for efficient multiverse analysis in computationally
intensive fields like neuroimaging. Wewill discuss how such GCN-based 198

measures can be integrated into frameworks to reduce computational
costs, improve methodological rigor, and enhance the robustness of
scientific findings. 201

Methods
The primary aim of this study is to systematically explore algorithms

for quantifying the similarity of fMRI processing pipelines based on 204

their analysis steps, as applied in the literature (Kristanto et al. 2024).
Specifically, we investigate how different similarity measures, including
traditional metrics and a novel Graph Convolutional Network (GCN) 207

based approach, capture patterns of consistency anddiscrepancy across
pipelines. To validate these measures, we compare their estimates to
empirical similarity derived through a multiverse analysis using real 210

data.

fMRI Experimental Data
For the empirical multiverse analysis to be compared with the meta- 213

analytic similarity, we used minimally processed data from the pub-
licly accessible Human Connectome Project (HCP) Young Adult dataset
(https://www.humanconnectome.org/study/hcp-young-adult). This 216

dataset comprises healthy individuals aged between 22 and 35 years,
from which we randomly selected 100 individuals for subsequent anal-
ysis. From these, we used the openly available resting-state time-series 219

data, which was cleaned through the HCP minimal processing pipeline
(Glasser et al. 2013) and parcellated into 400 cortical regions of interest
using the Schaefer et al. (2018) atlas. 222

fMRI Data Processing Pipelines
The analysis pipelines and associated meta-analytic data character-

izing their applications in the literature used in the present study were 225

derived from a systematic literature review, which specifically focused
on graph-based methods for fMRI studies (Kristanto et al. 2024). The
comprehensive review identified a total of 61 distinct preprocessing 228

and analysis steps commonly employed across studies, with 17 of these
steps representing often debated options such as data scrubbing, brain
parcellation, or spatial smoothing, which can significantly influence 231

the outcome of fMRI analyses. We grouped the steps based on their
functional contribution to processing pipelines to outline the common
workflow across pipelines. These groups are: Analysis software, struc- 234

tural preprocessing, functional preprocessing, noise removal, functional
connectivity definition, and network analysis (Figure 1a). In total, 220
pipelines were derived, which in the present study serve as the core un- 237

derlying data for the meta-analytic similarity measures. We emphasize
that the list of pipelines used in this study, albeit aiming at different
research questions, share a common goal, which is to estimate graph 240

measures from functional connectivity. Themeta-analytic data on fMRI
processing pipelines contain the following node and edge relevant in-
formation: Steps in the pipeline and the frequency of their usage in 243

5.2.XEE8F298E Brainiacs Journal of Brain Imaging And Computing Sciences © 2024 BHA
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the literature, functional group to which the step belongs (e.g., software
selection, structural or functional preprocessing, etc., see also Figure
1a), neighboring steps to which a step is connected, the number of stud-246

ies in the literature that used a corresponding pair of processing steps
consecutively, incoming connections (in-degree), outgoing connections
(out-degree).249

Traditional Similarity Measures
We first derive similarity measures from three well-established met-

rics in machine learning and bio-informatics: The Jaccard Index as well252

as Hamming and Levenshtein distances.
Jaccard Index: The Jaccard index quantifies the proportion of data

processing steps that are shared between pipelines (Jaccard 1901). By255

representing each pipeline as a set of steps, the ratio of the size of
the intersection (i.e., the common steps between two pipelines) to the
size of the union (i.e., all the unique steps across the two pipelines) is258

calculated. For example, consider two sets of steps: A = {1, 2, 3} and
B = {2, 3, 4, 5}. The intersectionA∩B contains the common steps
{2, 3}, and the unionA ∪B contains all unique steps {1, 2, 3, 4, 5}.261

The Jaccard index is calculated as:

J(A,B) =
|A ∩B|
|A ∪B|

=
2

5
= 0.4 (1)

It is important to note that the Jaccard index does not account for
the order of elements, meaning that it only considers the presence264

or absence of elements within the sets, regardless of their sequence.
Hamming Distance: The Hamming distance quantifies the dissimi-

larity between two pipelines by comparing the sequences of processing267

steps (Hamming 1950). Each pipeline is represented as an ordered
sequence, and the Hamming distance is defined as the number of mis-
matched steps between two pipelines when they are aligned step-by-270

step. For example, consider two binary strings representing processing
steps: '10101' and '10011'. The Hamming distance between these strings
is 2, because they differ at the third and fifth positions. Similarly, if273

two pipelines have identical steps but in different orders, the Hamming
distance will be non-zero, reflecting these positional discrepancies.
This metric is particularly useful in scenarios where the order of steps276

is critical to the outcome. We use the complement of the distance as a
measure of similarity. Unlike the Jaccard index, which only considers
the presence or absence of steps, the Hamming distance accounts for279

the order of the steps by calculating the number of positions at which
the corresponding steps in two pipelines differ.
Levenshtein Distance: The Levenshtein distance estimates the dis-282

tance between two pipelines by measuring the minimum number of
single-step edits required to transform one pipeline into the other (Lev-
enshtein 1966). These edits can include substitutions, insertions, or285

deletions of processing steps. For example, the Levenshtein distance
between the strings ’kitten’ and ’sitting’ is 3, as it involves two substitu-
tions ('k'→ 's' and 'e'→ 'i') and one insertion ('g' at the end). Unlike the288

Hamming distance, the Levenshtein distance accounts for sequences
of different lengths by incorporating these insertion and deletion op-
erations. The Levenshtein distance thus provides a way to assess how291

similar or different two pipelines are, considering both the order of
steps and the specific modifications needed to align one sequence with
the other. This metric is particularly useful in scenarios where small294

differences between pipelines—such as an extra step or a substituted
processing method—can have significant implications.
Moreover, we also implemented the Damerau-Levenshtein distance297

Table 1: Pipeline decisions for multiverse analysis. HCP: Human
Connectome Project, WM/CSF: White matter and cerebrospinal fluid

regressors.

Pipeline Step Parameter(s)

Preprocessing HCP minimal processing pipeline
Cleaning None

6-parameter movement, WM/CSF
Global signal regression
All combined

Temporal filtering None
Band-pass (0.01 - 0.1 Hz)

Parcellation Schaefer 400
Network construction Discard negative, 50% density
Graph measure Global efficiency

in our analysis, which is an extension of the Levenshtein distance that
additionally accounts for adjacent transpositions (i.e., swapping two
neighboring elements). This extension is particularly relevant in sce- 300

narios where adjacent transpositions are a common source of variation
between sequences. However, we found highly similar results as with
the traditional Levenshtein distance (a correlation value of 1 between 303

both distance measures). Results for the Damerau-Levenshtein dis-
tance are available in the supplementary Python notebooks.

Graph Convolutional Network (GCN) 306

We propose a new way of measuring the similarity between analysis
pipelines, which utilizes a Graph Convolutional Network (GCN) com-
bined with Deep Graph Infomax (DGI). Unlike traditional methods, this 309

approach encodes each analysis step in the pipeline as a distinct feature
vector, with information provided both by the step itself and by external
features (such as its functional group as depicted in Figure 1; see Section 312

for details). The GCN also learns from neighboring steps in the pipeline
by aggregating information from adjacent nodes, allowing the model to
capture relationships between steps. This enables the model to weigh 315

each step differently based on its role and connections in the pipeline,
which in turn influences the similarity scores between pipelines. An ad-
vantage of this method is that it reflects both the presence of steps and 318

how they are used in detail, making it more representative of real-world
differences in processing pipelines.
Network Construction: The aggregate of the analysis pipelines de- 321

rived from the literature can be analysed as a weighted and directed
graph. Here, the nodes of the graph are the individual processing steps
in the pipeline (e.g., spatial normalization, motion regression, parcella- 324

tion), and the weighted directed edges are the number of studies in the
literature that used the corresponding pair of processing steps consec-
utively. We also included nodal features, namely the frequency of a 327

step (number of studies that applied the step), its incoming connections
(in-degree), outgoing connections (out-degree), individual identity, and
a group identity (e.g., structural or functional preprocessing, functional 330

preprocessing, noise removal).
The GCN was then combined with the DGI algorithm to learn node

representations for the fMRI processing pipeline in an unsupervised 333

manner. The GCN generated initial embeddings by aggregating infor-
mation from each node’s neighbors, capturing local structural and fea-
ture information. DGI then refined these embeddings by introducing 336

corrupted versions of the graph and training the model to distinguish
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Table 2: Multiverse Analysis Pipeline Configurations. GSR: Global signal regression, WM/CSF: White matter and cerebrospinal fluid regressors.

Pipeline Step i+1 Step i+2 Step i+3

Pipeline 1 Parcellation: Schaefer 400 Confounds: none Band-pass filtering
Pipeline 2 Parcellation: Schaefer 400 Confounds: none No filtering
Pipeline 3 Parcellation: Schaefer 400 Confounds: GSR Band-pass filtering
Pipeline 4 Parcellation: Schaefer 400 Confounds: GSR No filtering
Pipeline 5 Parcellation: Schaefer 400 Confounds: motion + WM/CSF Band-pass filtering
Pipeline 6 Parcellation: Schaefer 400 Confounds: motion + WM/CSF No filtering
Pipeline 7 Parcellation: Schaefer 400 Confounds: GSR + motion + WM/CSF Band-pass filtering
Pipeline 8 Parcellation: Schaefer 400 Confounds: GSR + motion + WM/CSF No filtering
Pipeline 9 Confounds: none Parcellation: Schaefer 400 Band-pass filtering
Pipeline 10 Confounds: none Parcellation: Schaefer 400 No filtering
Pipeline 11 Confounds: GSR Parcellation: Schaefer 400 Band-pass filtering
Pipeline 12 Confounds: GSR Parcellation: Schaefer 400 No filtering
Pipeline 13 Confounds: motion + WM/CSF Parcellation: Schaefer 400 Band-pass filtering
Pipeline 14 Confounds: motion + WMWM/CSF Parcellation: Schaefer 400 No filtering
Pipeline 15 Confounds: GSR + motion + WM/CSF Parcellation: Schaefer 400 Band-pass filtering
Pipeline 16 Confounds: GSR + motion + WM/CSF Parcellation: Schaefer 400 No filtering
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Figure 2: Similarity and distribution of similarity values for the different measures. K-means clustering was performed for the embedding
similarity (mean) and all other matrices were ordered accordingly. The figure highlights a considerable overlap between measures.

between true and corrupted data (Veličković et al. 2018). This pro-
cess maximizes mutual information between node embeddings and339

high-level summaries of the graphs, resulting in robust and informative
representations for downstream tasks like the proposed estimation of
pipeline similarity. As the number of layers in a GCN increases, the net-342

work aggregates information from nodes that are increasingly distant in
the graph. We chose to use a single layer for our network architecture to
focus on local relationships between processing steps only, which helps345

reduce the influence of distant, potentially less relevant connections.
This approach is particularly useful given that not all combinations
of processing steps are valid in an analysis pipeline, and focusing on348

local interactions helps to mitigate the risk of capturing implausible
sequences in the embeddings.
Embedding Aggregation: The output embeddings of a GCN corre-351

spond to the neurons in its output layer. However, since fMRI processing
pipelines vary in length, aggregating these embeddings into a consis-
tent format is a challenge. To preserve the sequential nature of the 354

pipelines, we apply Dynamic Time Warping (DTW), which measures
similarity between temporal sequences, allowing for flexible, non-linear
alignment of steps and accounting for differences in pipeline length 357

or step ordering (Sakoe and Chiba 1978). Notably, DTW was imple-
mented by treating consecutive steps as being one unit of time apart
in sequences. This approach is thus similar to the implementation 360

of Levenshtein distance, with the important distinction that, in DTW,
each step is represented by embeddings learned during GCN training,
whereas in Levenshtein distance, steps are simply represented by their 363

discrete labels. To distinguish this GCN-based similarity measure from
the network itself, we will refer to it as ”GCN-embeddings”.

5.2.XEE8F298E Brainiacs Journal of Brain Imaging And Computing Sciences © 2024 BHA
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In detail, the trained GCN generates embeddings for each node (pro-366

cessing step), where each embedding is a vector corresponding to the
network architecture (e.g., a 32-dimensional vector for a single-layer
network with 32 neurons). Each pipeline is represented as a list of these369

embeddings, with the length of the list matching the number of steps
in the pipeline. After aggregating the step embeddings into pipeline
features, we computed the similarity between pipelines using Euclidean372

distance.

Normalization Across Measures
To facilitate the comparison between similarity measures, all mea-375

sures were transformed and scaled into a common scale ranging from
0 (completely dissimilar) to 1 (completely similar):

Similarity(Dij) = 1− Dij −min(D)

max(D)−min(D)
(2)

withD being the distance matrix for each measure (GCN-embeddings,378

Jaccard index, Hamming distance, and Levenshtein distance).

Empirical Multiverse Analysis
As a final analysis, we conducted a real-data multiverse analysis to381

establish an empirical ground truth for pipeline output similarity. This
ground truth served as a benchmark to compare the performance of the
previously introduced similarity measures. Due to the computational384

challenges of performing a comprehensive multiverse analysis across
all structural and functional preprocessing steps, we focused on the
later stages of a standard graph analysis pipeline. Using minimally387

preprocessed data from the HCP Young Adult dataset, we randomly
selected 100 individuals for subsequent analysis. For these individuals,
we computed the graph measure, global efficiency, across different390

analysis pipelines as shown in Table 1. The multiverse analysis was
implemented using the Comet toolbox (Burkhardt and Giessing 2024),
which provides an integrated framework for functional connectivity,393

graph analysis, and multiverse analysis.
Analysis pipelines begin with identical preprocessing steps (the HCP

minimal processing pipeline; Glasser et al. (2013)) but differ in their396

noise reduction strategies, which included four confound regression
options (none, 6-parameter movement + white matter (WM) + cere-
brospinal fluid (CSF), global signal, and both combined) as well as two399

filtering strategies (none, band-pass filtering between 0.01 and 0.1 Hz).
Additionally, we altered the order of data cleaning and parcellation,
resulting in two configurations: cleaning performed before parcellation402

or after. Since the total number of pipelines is the Cartesian product of
these decisions, the multiverse comprised 16 pipelines (2× 4× 2).
The remaining parameters were kept consistent across all pipelines.405

This included parcellation, temporal detrending, calculating functional
connectivity using Pearson correlation, constructing graph networks
(removing negative correlations and thresholding to 50% density of408

the network), and computing global efficiency for each participant.
To estimate similarity between pipelines, we computed the Pearson
correlation of global efficiency values between pairs of pipelines across411

individuals, resulting in a 16 × 16 empirical similarity matrix. This
matrix was used as a ground truth reference to evaluate the proposed
similarity measures, which estimated similarity based solely on the414

steps in the pipelines without running them on real data.
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Figure 3: Correlation and Adjusted Rand Index (ARI) matrices between
similarity measures. Most measures share a reasonable amount of
variance. The adjusted rand index (ARI) is highest for methods which
take the order of steps into account (DTW, Hamming, and Levenshtein).

Results
Comparative Analysis 417

We first trained the GCN and computed pipeline similarity based
on the pipeline features. The training of the model is shown in the
supplementary Python notebooks. Next, we computed pipeline sim- 420

ilarity using other measures (Jaccard index, Hamming distance, and
Levenshtein distance). We then compared the similarity estimates as
shown in Figure 2. It becomes clear that there is a considerable overlap 423

between the measures, as indicated by the moderate to high correla-
tion between them (Figure 3). Interestingly, GCN-embeddings shows
reasonably high correlation with Hamming (r = .66) and Levenshtein 426

(r = .65). Further, the distributions of the similarity estimates show
considerable differences. Similarity estimates derived from GCN em-
beddings are left-skewed and thus generally show higher similarity 429

between pipelines. Hamming and Levenshtein distances display less
smooth characteristics compared to the other methods, and the Jaccard
index based similarity measures appear normally distributed. 432

Cluster Overlap
A more nuanced understanding of the resulting similarity matrices

from different methods can be obtained by using the Adjusted Rand 435

Index (ARI) (Hubert and Arabie 1985). ARI is a measure of the agree-
ment between partitions obtained from a clustering approach. For this
comparison, each similarity matrix was clustered into four groups, with 438

the optimal number of clusters determined using the elbow criterion
(see accompanying Python notebook for details). As shown in Figure
3, the ARI values were highest for DTW, Hamming, and Levenshtein, 441

meaning that the three measures that account for the step order in the
pipelines also show the highest cluster overlap.
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Structural preprocessing ... Network construction

ParcellationCleaning
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Parcellation Cleaning

Pipeline i

Pipeline j ......

Pattern 2: Switch in order

Structural preprocessing Network construction

Structural preprocessing ...Pipeline i

Pipeline j ...Structural preprocessing

Network construction

Network construction

GCN-DTW: dissimilar
Hamming: similar

GCN-DTW: similar
Levenshtein: dissimilar

Pattern 1: Different length
 

GCN-DTW: dissimilar
Levenshtein: similarPairwise disagreement between measures:

Pairwise disagreement between measures:

Figure 4: Differences between measures. Measures were evaluated in more detail by observing pairs of pipelines which show highest
disagreement between measures. Only pipelines which consider the order of the steps were included. Two distinct patterns emerge. Top: Pattern
1 concerns pipelines of different length. Comparing GCN-embeddings to Levenshtein, GCN-embeddings considers such a pair of pipelines to be
more dissimilar, while Levenshtein considers these pipelines to be more similar. The same pattern holds when comparing GCN-embeddings to
Hamming. Bottom: Pattern 2 concerns a switch in order between cleaning and parcellation. GCN-embeddings considers these pipelines to be

more similar, while Levenshtein considers these pipelines to be more dissimilar.
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Figure 5: Similarity estimates from pipelines as listed in Table 2. Empirical similarity estimates show a strong grid-like pattern, which can be
attributed to global signal regression. The ordering of steps (cleaning before or after parcellation) does not show a noticeable influence.
Comparing the empirical similarity to the predicted similarities showed that all measures fail to pick up on this pattern, but mostly group

pipelines into blocks of 4 (performing/not performing confound regression for motion, WM, and CSF). Please refer to the
multiverse_summary.csv file in the supplementary materials for a detailed description of the pipelines.

Differences between Pipelines444

Given the above findings, we further examined the emerging patterns
produced by these three measures. We were particularly interested in
pairs of pipelines where the similarity values computed by these mea-447

sures were highly different. We therefore performed a pairwise com-
parison between the three similarity measures (i.e., GCN-embeddings
vs. Hamming, GCN-embeddings vs. Levenshtein, and Hamming vs.450

Levenshtein) by using their similarity matrices shown in Figure 2. For
each pair, we then extracted the 10 items with the highest absolute
difference, that is, the 10 pairs of pipelines for which themeasuresmost453

highly disagree in their similarity estimate. To account for a potential
bias in the GCN, we repeated the entire process (including re-training of

the GCN) 10 times resulting in 100 pairs of pipelines for each pairwise 456

comparison.
We then investigated the origin of the differences in similarity es-

timates and found two distinct patterns (Figure 4). The first pattern 459

emerged from the pairs of pipelines with different length. For the 100
pairs of pipelines for which GCN-embeddings and Levenshtein most
highly disagree, the average difference in length was 10.01 processing 462

steps, with GCN-embeddings judging the pair of pipelines to be less sim-
ilar in all 100 cases. The same pattern can also be observed in the pair-
wise comparison between GCN-embeddings and Hamming. There, the 465

average difference in pipeline length was 6.85, with GCN-embeddings
considering such pipelines to be less similar in 62 out of 100 times.
These results indicated that the Hamming-based measure was less 468
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sensitive to these pipeline pairs compared to the GCN-embeddings
measure. It is important to note that while these pipeline pairs differed
in length, a significant portion of their steps were identical. Specifi-471

cally, they shared minimal preprocessing pipelines from the Human
Connectome Project, including identical steps for structural and func-
tional preprocessing. The primary differences lay in subsequent noise474

reduction steps. This similarity in the early, substantial portion of the
pipelines may explain why the Hamming distance identified these pairs
as more similar than GCN-embeddings. In GCN-embeddings, each step477

is represented by its own embedding. Some steps may have larger
embeddings than others, potentially leading to the identification of
these pipeline pairs as less similar.480

The second pattern highlighted a switch in order between brain par-
cellation and steps related to noise removal such as temporal filtering
and motion regression. More specifically, we evaluated this order by483

assessing whether cleaning was performed in a high dimensional brain
space (voxel level or high-resolution surface mesh), or on parcellated
brain signals (groups of voxels/vertices clustered together into function-486

ally distinct brain regions). This pattern emerged in 14% of comparisons
between GCN-embeddings and Hamming, in 46% of comparisons be-
tweenGCN-embeddings and Levenshtein, but in0%of comparisons be-489

tween Hamming and Levenshtein, indicating that the GCN-embeddings
measure is robust to this pattern. Further, the comparison between
GCN-embeddings and Levenshtein revealed that pairs of pipelines with492

this pattern were seen as more similar by GCN-embeddings and less
similar by Levenshtein.

Empirical Multiverse Analysis495

To evaluate the effectiveness of the meta-analytic pipeline similarity
measures, we compared them with empirical similarity obtained by
running pipelines on real MRI data as described in Methods ). A total498

of 16 analysis pipelines were applied to the HCP dataset, and their
empirical similarities were computed.
Figure 5 shows the empirical as well as the predicted meta-analytic501

similarity matrices of the analysis pipelines listed in Table 2. For the em-
pirical similarity, a grid-like pattern becomes apparent. This can be at-
tributed to global signal regression (GSR). Pipelines with GSR (Pipelines504

3, 4, 7, 8, 11, 12, 15, 16) demonstrated high similarity to one another
but low similarity to pipelines without GSR (pipelines 1, 2, 5, 6, 9, 10,
13, 14), and vice versa. Although not a particular focus of the present507

study, this finding once again outlined the significant impact of GSR
on analysis pipeline results. The meta-analytic similarity estimates
failed to pick up on this pattern, but more closely picked up the pattern510

of performing/not performing confound regression for motion, WM,
and CSF signals. This lead to blocks of 4 being more pronounced in
their estimates, which are most visible for Hamming, but also for GCN-513

embeddings and Levenshtein. Notably, the order of performed steps
(first 8 vs. second 8 pipelines) did not play amajor role for differences in
similarity. For example, pipelines performing cleaning after parcellation516

(Pipelines 1, 2, 5, 6) were highly similar to pipelines performing cleaning
before parcellation (Pipelines 9, 10, 13, 14).
Finally, we computed the absolute errors between the empirical and519

meta-analytic pipeline similarities. Figure 6 displays the distribution of
absolute errors for eachmeasure. GCN-embeddings showed the lowest
median absolute error (MAE) of 0.18, with Jaccard (MAE = 0.23), and522

Levenshtein (MAE = 0.26) trailing closely behind. Hamming showed a
substantially higher MAE of 0.45. Please refer to the supplementary
Python notebooks for element-wise error matrices. Despite their rea-525

0.0 0.2 0.4 0.6 0.8 1.0
Absolute Error

GCN-embedings

Jaccard

Levenshtein

Hamming

Deviation from empirical similarity

Figure 6: Comparison to ground truth. Comparing the estimated
similarity between analysis pipelines to the ground truth from

multiverse analysis, GCN-embeddings displays the lowest median
absolute error (MAE) of 0.18. Jaccard (MAE = 0.23) and Levenshtein
(MAE = 0.26) also produce similar estimates, while Hamming (MAE =

0.45) shows a considerably worse performance.

sonable performance, all measures failed to capture the influence of
critical processing steps (in this case GSR) on pipeline similarity. We
will later discuss potential extensions to GCN-embeddings method, 528

informed by empirical evidence, to better account for the substantial
influence of certain processing decisions on pipeline performance.

Discussion 531

In the present study, we elaborated onmeasuring similarity between
processing pipelines in the context of multiverse analysis for fMRI stud-
ies, where pipelines involve complex sequences of steps. We intro- 534

duced a novel meta-analytic pipeline similarity measure based on a
GraphConvolutionalNetwork (GCN) and compared it to traditionalmea-
sures like Jaccard index, Hamming distance, and Levenshtein distance. 537

Unlike these traditional measures, our GCN-based approach (GCN-
embeddings) allows for varying contributions from different steps when
computing pipeline similarities. Put simply, while traditional measures 540

treat all steps equally, GCN-based measures assign individual weights
to different steps. We expected that this would enable GCN-based
measures to capture both consistent and distinct similarity/dissimilarity 543

patterns in pipelines compared to the traditional measures.
We examined the similarity between GCN-embeddings and other

traditional measures. Figures 2 and 3 show that the pipeline similarity 546

estimates of GCN-embeddings overlap with those of other measures,
suggesting that a GCN-based approach can also capture relevant pat-
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terns. Moreover, a detailed analysis comparing pipeline partitions ob-549

tained by these measures revealed that GCN-embeddings was more
consistent with Hamming and Levenshtein similarity measures but not
with the Jaccard index. This finding was expected, as GCN-embeddings,552

Hamming, and Levenshtein consider the order of steps when calculating
pipeline similarity.
It is important to clarify that the focus of the present work was not555

to validate pipelines for specific cognitive neuroscience hypothesis test-
ing efforts. Instead, we relied on a meta-analytic dataset consisting
of pipelines designed for different research purposes, unified by the558

common aim of estimating graph measures from functional connectiv-
ity. The primary contribution of this study was the development of a
computationally efficient framework for quantifying pipeline similarity,561

which is critical for subsampling themultiverse of analytical decisions in
a manageable and representative way, allowing researchers to explore
variability across pipelines without requiring the exhaustive evaluation564

of all possible combinations.
Therefore, the validity of specific pipelines to test a particular hy-

pothesis in cognitive neuroscience and its interpretations is outside the567

scope of this work. Instead, our focus was to assess whether meta-
analytic data on the use of pipelines across multiple individual studies
in graph-theoretic fMRI analyses can be used to effectively estimate570

pipeline similarity that approximates well empirical similaritymeasures,
and which could be used to design multiverse analyses and efficient
sampling from the multiverse in situations where the multiverse cannot573

be computed exhaustively but only approximated. While the present
work advances methods for multiverse analysis, future studies could
expand upon this framework by integrating hypothesis-specific consid-576

erations and further validating the approach in the context of specific
cognitive neuroscience experimental paradigms. For now, the approach
is aimed to serve as amethodological tool to facilitate efficient subsam-579

pling and variability assessment within the multiverse, independent of
the specific experimental context.

Patterns in Similarity Discrepancies582

Through a more in-depth analysis focusing only on the similarity
measures that take the order of processing steps into account, we iden-
tified patterns in how these measures distinguish similar and dissimilar585

analysis pipelines. We focused on pairs of pipelines that exhibited the
greatest discrepancies in similarity values computed by these mea-
sures. The first pattern was found in pipeline pairs that have different588

length. For example, two pipelines might use the Human Connectome
Project (HCP) minimal preprocessing pipeline in earlier steps, but differ
in length in the later part of the pipeline for cleaning or network con-591

struction. Hamming and Levenshtein score such pairs as highly similar
due to the large number of common steps, while GCN-embeddings
assigns a lower similarity score. This can be explained by examining594

processing step embeddings computed by the GCN, where steps re-
lated to network reconstruction have higher weights (mean embedding
values, see supplementary Python notebook) compared to other earlier597

steps in the pipeline. Thus, pipelines with different network recon-
struction steps would be less similar even if they share many other
earlier steps. Second, comparing GCN-embeddings and Levenshtein,600

discrepancies were also found in pipeline pairs that differed in when
cleaning steps (e.g., temporal filtering, motion regression) were em-
ployed. One pipeline might perform cleaning after brain parcellation,603

while others might do so before. Levenshtein considered these less
similar due to the difference in order, and because it treated all steps

equally. However, GCN-embeddings assigned them higher similarity 606

because the weights it computed for brain parcellation and cleaning
steps (e.g., temporal filtering, motion regression) were similar (mean
embedding values, see supplementary Python notebook). Thus, these 609

pipelineswere consideredmore similar, despite their different sequence
of steps, based on their embeddings. Importantly, the embeddings of
a step also capture information about its neighbours, suggesting that 612

similarity in embeddings implies that these steps may have an overlap
in common neighbours.

Empirical Comparison 615

Comparing the meta-analytic similarity measures (using features
characterizing their use in the literature) with empirical measures in a
small multiverse of 16 pipelines revealed that GCN-embeddings per- 618

formed, in terms of absolute error, comparably to traditional measures
such as Levenshtein and Hamming distances. However, none of the
methods — including GCN-embeddings — were able to adequately 621

capture the substantial influence of global signal regression (GSR) on
empirical similarity, underscoring a key limitation in current approaches:
the inability to fully account for individual analysis steps with dispropor- 624

tionate effects on the outcome. In contrast, GCN-embeddings (as well
as Jaccard and Levenshtein distances) was more sensitive to differences
in pipeline lengths caused by variations in the number of individual 627

steps within specific categories (in this case cleaning). These differences
are amplified by the current coding schemes in which certain pipeline
categories, like cleaning, may include a varying number of steps. 630

Implications and Future Directions
The findings of the present study suggest that GCN-based meta-

analytic similarity measures may serve as a simple foundational tool 633

for incorporating prior knowledge from an extensive literature into mul-
tiverse analysis frameworks. While the proposed method does not yet
fully capture the effects of influential individual analysis steps, it al- 636

ready generates valuable information with relatively low computational
effort. Future work is required to validate GCN-embeddings (or other
GCN-based approaches) with larger and more comprehensive multi- 639

verse analyses and examine its consistency with empirically derived
similarity measures. Establishing robust empirical ground truths will en-
able the refinement of the GCN, such as exploring deeper architectures 642

to better capture global features across pipelines. Incorporating con-
textual information on the level of individual analysis steps, informed
by expert knowledge about disproportionately influential steps, could 645

also enhance the ability of the algorithm to distinguish meaningful
differences between pipelines. Finally, automating the extraction of
pipelines from literature would expand the meta-analytic dataset used 648

here significantly, facilitating more robust training and testing of the
model.

Broader Impact 651

While our study was primarily focused on quantifying pipeline sim-
ilarity within the context of fMRI, its broader implications extend to
addressing potential “fallacies and pitfalls” in other life science research 654

domains (Hecker et al. 2023) that rely on complex data preprocess-
ing, such as Positron Emission Tomography (PET) (Naseri et al. 2024),
Electroencephalography (EEG) (Jacobsen et al. 2024), or genome-wide 657

association studies (GWAS) (Hecker et al. 2023). This approach, by
enabling a deeper understanding of how different processing and anal-
ysis choices can subtly affect results, promotes greater transparency 660
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and reproducibility in such computational disciplines. Such enhanced
understanding can help mitigate the risk of drawing misleading con-
clusions due to pipeline variability, a common pitfall in data-intensive663

research. Our work contributes to the broader goal of improving the
validity and integrity of scientific findings in these research areas that
rely on complex, multidimensional data.666

Study Limitations
First, the meta-analytic dataset used in this analysis was limited to

220 pipelines, constraining the scope of the analysis. Automating the669

extraction of pipelines from the literature would address this limitation.
Second, parameter-level differences in steps (e.g., specific software
package, type of brain parcellation, number of motion regressors, or672

filtering options) were not considered, despite their known influence on
results (Parkes et al. 2018; Luppi et al. 2024). Including these factors
in future analyses is essential, though this was infeasible in the current675

study as this would lead to a sparse network, which would hinder the
training of the GCN. Third, the empirical comparison was limited to a
small multiverse of 16 pipelines with significant overlap in steps due678

to the HCP preprocessing pipeline. Expanding the analysis to a more
diverse and larger set of pipelines would provide deeper insights into
the behavior of the proposed measures.681

Another avenue for improvement involves ensuring a uniform num-
ber of steps across pipelines, as this could enable fairer comparisons
between methods and potentially reduce absolute error. Standardizing684

step representations, such as collapsing all noise reduction strategies
under a single step with specific options (e.g., ”Noise Reduction: GSR,
None, or Both”), could improve performance. Such an approach would687

also require data sets from the literature to follow a consistent coding
scheme, ensuring that all steps are comparable across pipelines.

Conclusion690

The present study highlights the importance of quantifying pipeline
similarities as a step toward improving the efficiency of multiverse
analysis and developing tools for enhanced reproducibility in computa-693

tionally intensive research workflows. By integrating step embeddings
and sequential characteristics, GCN-based methods provide a simple
framework to inform future algorithm development. While the current696

GCN-based similarity measure does not yet fully address variability
(e.g. due to particularly influential analysis steps), its ability to gener-
ate valuable prior knowledge with low computational effort makes it a699

promising foundation for future advancements in this area.
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