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Abstract

In close relation to experimental data, we present simulation exam-
ples of neural coding phenomena from different levels to illustrate their
functional interdependencies and to elucidate common characteristics.
This goes from single ion channel recordings, to voltage and current
clamp experiments, including intracellularly recorded action potentials,
up to the generation of neuronal impulse pattern and their implications
for neuronal network synchronization. Special attention is given to
neural stochasticity emphasizing the impact on neuronal heterogeneity
and noise.
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Introduction

Relating experimentally or clinically observed neural coding phe-
nomena of to the underlying mechanisms and understanding their
interdependencies can be a challenging task. Neural codes are consid-
ered to be transmitted by the temporal and spatial pattern of action
potentials. Action potentials originate from the opening and closing
of ion channels. Depending on the composition of ion channels the
neurons can generate action potential sequences of different temporal
pattern. How the neural code is interpreted also depends on the inter-
nal states of the neurons to which the information is transmitted. This
again depends on how strongly the neurons are connected in neuronal
networks. The collective behavior of network neurons in turn depends
not only on their connectivity but likewise on the internal dynamics
of their individual neurons and how they may change under specific
stimulus conditions. This will be illustrated by computer simulations of
neuronal dynamics at different functional levels, from ion channels to
neuronal networks.

Methods

Our computer simulations are based on the classical Hodgkin-Huxley
(HH) equations (Hodgkin and Huxley 1952), however, with several sim-
plifications (Postnova et al. 2010; Tchaptchet et al. 2013). Especially, we
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have replaced the complicated rate constants of the original HH equa-
tions by single exponential functions, which lead to activation curves a
in explicit form of Boltzmann functions with slope s and half activation
voltage V}, witha = 1/(1 4 exp(—s(V — V4))). The time delays
are modeled by a first order differential equation da/dt = (ap=a)/T
with steady state value a( and time constant 7. The membrane equa-
tion CdV /dt = X1 of our model neurons follows the general form
of mechanism-based HH-type equations. Changes of the membrane
voltage V over time ¢ across the membrane capacitance C'is given
by the sum of diverse ion currents I; which are calculated according
to Ohm's law I; = g;a;(V — V;) with equilibrium voltages V; and
maximum conductances g;.

In SimNeuron, we use a minimal set of ion currents. Apart from a sin-
gle term for leak currents there are the voltage dependent sodium and
potassium currents for action potential generation. The cold receptor
model, our single-neuron pattern generator, is extended by two slow,
subthreshold currents, which activate already below the voltage range
of spike generation (Braun et al. 2000). The slow repolarizing current is
modeled as a simplified version of a voltage- and calcium-dependent
potassium current. A noise term can be added to account for a physio-
logically realistic randomness of spike generation. Temperature effects
are implemented by Q10 values of 3.0 for activation time-constant
and 1.3 for maximum conductances. Our neural network is organized in
a 10x10-matrix of pattern generator neurons in torus-like form. Each
neuron is coupled to its 8 direct neighbors via gap-junction currents
I.(1,7) forwhich I.(1, ) = 9.2(Vi j — Vign j+m ) Where g, is the
coupling conductance and V;_; the membrane potential of neuron (i,j),
and Vi1, j+m the membrane potential of the neighboring neurons
with {4, 510, ...,9} and {m, n|—1,0, 1}.

Results

The following sections will present simulation examples ranging from
single ion channel activation to voltage and current clamp recordings,
including intracellularly recorded action potentials, up to the generation
of neuronal impulse pattern and their implications for neuronal network
synchronization. Special attention is given to neural stochasticity by
emphasizing the functional effects of neuronal heterogeneity and noise.

1) lon Channels: We start at the functionally lowest level of neural
coding, the opening and closing of ion channels. Already at his level
a major feature of neuronal mechanism is elucidated, namely the es-
sential contribution of randomness which seem to progress up to the
highest levels, eventually even including mental processes like decision-
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Figure 1: Simulation of voltage-dependent probability changes of ion
channel opening and closing. Upper diagrams show the open (green)
and closed (red) states. V is the voltage and m is the percentage of
open times. Lower diagram: The exponential probability curves p (blue)
lead to a sigmoid curve of open states (green). The black dots show
the opening probabilities of 100 simulations at different voltages dis-
tributed along the sigmoid curve.

making (Braun 2021). Although single ion channels can only attain two
states, open or close, their voltage dependencies follow a gradual, ap-
proximately sigmoid function, (Boltzmann function, Logistic function).
The results from the combination of physiological rules with random-
ness. Apparently, ion channels randomly fluctuate between open and
closed states while the membrane voltage, as well as physiological
transmitters or neuromodulators, change the opening and closing prob-
abilities. This is illustrated by the simulation example in Fig. 1 showing
in the left part the open and closed states of a single ion channel as a
function of the membrane voltage and on the right the exponential tran-
sition probabilities together with the resulting Boltzmann function. The
black dots show the percentage of open states from 100 simulations
runs, which are nicely distributed along the theoretical curve which, of
course, will only be hit by chance. The lowest graph on the right shows
the noise as it would result from 100 ion channels.

2) lon currents and action potentials: For the next step we can go in
a comparably easy to overlook voltage-/current clamp lab, SimNeuron
(www.virtual-physiology.com), which generally is used for teaching the
interdependencies of ion channel activation, ion currents and mem-
brane voltage. This lab only considers, apart from a leak current, the
voltage-dependent sodium and potassium currents for action potential
generation. Action potentials (APs) arise from the opening and closing
of ion channels which, however, additionally request an appropriate
timing. This is illustrated in Fig. 2 showing, on the left, in addition to
the sigmoid voltage dependencies also the time dependencies of Na+-
and K+-channel activation, including Na+-channel inactivation. The
voltage- and time-dependencies of ion current activation and inactiva-
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Figure 2: Left: Voltage and time depncencies of Na+-current activa-
tion (violet) and inactivation (pink) together with K+-current activation
(normalized). Middle: Whole cell currents (red) of a virtual neuron in re-
sponse to different voltage-clamp steps (blue). Right: Action potential
(blue) of the same neuron in response to an external current pulse (red).
Additionally shown are the alterations of ion currents (upper diagram)
and conductances (lower diagram) in violet (for Na+) and green (for K+)
Simulations taken for the virtual SimNeuron laboratory (www.virtual-
physiology.com).

Figure 3: Bifurcation diagram of interspike-intervals of the cold receptor
model in a deterministic simulation (upper diagram, blue) and with
addition of voltage noise (lower diagram, black).

tion can particularly well be examined in voltage-clamp experiments
as illustrated in the middle of Fig. 2. A depolarizing voltage-clamp step
activates the voltage dependent Na+- as well as K+-currents. This leads
to an initial transient inward current of Na-ions because of their very
short activation time-constant. The Na+-channels then inactivate and
the K+-channels open, both with much longer time constants, which
leads to a persistent K+-outward current, without inactivation. In this
example, the repolarizing K+-current activates already at lower poten-
tial then the Na-current. It is only due to the much faster opening of
the Na+-channels which nevertheless allows the generation of action
potentials. This is illustrated in right graphs of Fig. 2 which also show
the Na+- and K+-conductances and currents which, by the way, in real
experiments cannot be recorded simultaneously. Appropriate simula-
tion approaches can be very useful tools also to connect experimental
data (Tchaptchet et al. 2013).
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Figure 4: Synchronization simulations of two networks of 100 gap-
junction coupled neurons in a torus-like map during increasing coupling
from O to 15 nS. The graphs show the raster plot of spike times of all
100 neurons together with their averaged membrane potential (upper
traces). The networks are composed of a heterogeneous set of noisy
neurons randomly taken out of a temperature range between 6°C and
12°C (upper diagrams) and between 12°C and 18°C (lower diagrams).

3) Impulse Pattern: We are going one step further to neurons with
additional ion currents with the special feature that they are already
activated in the regular operating range of the neurons. Here we refer
to a well-examined model neuron, which originally has been developed
to simulate the temperature dependencies of spontaneous cold recep-
tors discharges but in between has become a widely used model as
a generic neural pattern generator. The equations and parameter val-
ues have repeatedly been described (Braun et al. 2000). Fig. 3 shows
the deterministic and noisy bifurcation diagrams of the original cold
receptor model. By the way, the most relevant control parameters for
temperature scaling are the activation time-constant of the subthresh-
old currents. Noise is essential to account for a certain activity pattern
arising from subthreshold oscillation with random spike generation,
which is an often observed pattern also in the central nervous system.
It does not appear in purely deterministic simulations. Deterministic
simulations, in turn, clearly discover a broad range of deterministic
chaos at the transition from single spike activity (tonic firing) to impulse
groups (burst discharges).

4) Network synchronization: Transitions from single spike activity to
burst discharges are not only carrying information of sensory receptors
but also are considered a most relevant feature to facilitate neuronal
network synchronisation, e.g. during epileptic seizures, in Parkinson
disease, and especially well known, at the transitions from wake to
sleep states (Postnova et al. 2010), We illustrate this with simulation
examples of network synchronization when the neurons are taken out
of the tonic firing and chaotic regime compared with a network which
also include bursting neurons. To consider the general randomness of
neuronal activity we have added noisy. Additionally, to account for

the physiological heterogeneity of neurons (Tchaptchet 2018), we have
randomly taken the neurons out of broader temperature ranges of the
bifurcation diagram in Fig. 2. One range spreads from 6 to 12 °C and
the other one from 12 to 18°C. The synchronization results in Fig. 4
are obtained with a torus-like networks of 10 to 10 nearest neighbour,
gap-junction coupled neurons during increasing coupling strengths. At
the beginning the spikes, as indicated in the raster plots, appears at
rather random time, due to noise and also because of the heterogeneity
of the neurons. With increasing coupling strength the neurons begin to
synchronize but only the network with bursting neurons exhibit a clearly
structured pattern of compound spike generation. This is also reflected
in the middle trace of Fig, 4 representing kind of a field potential in
which slow wave oscillations develop, but only when bursting neurons
are included.

Discussion

We have been going from single ion channels to ion currents and
action potentials up to neuronal network synchronisation and thereby
have specifically focused on basic functions in neural coding. This is,
first, the sigmoid activation curve, which is the result of an essential con-
tribution of noise while its nonlinear form is again particular susceptible
to further stochastic influences in whatever form. The second point
concerns the time delays, recognizable in any physiological functions,
already at the lowest level of ion channel activation. These character-
istics apparently proceed to all higher levels of neural functions up to
neural networks.

Conclusion

The network simulations clearly demonstrate that neuronal network
synchronization is not only a question of the coupling strength but also
of the intrinsic dynamics of the neurons. The neurons in the one network
differ from the neurons in the other network mainly by slight differ-
ences in the activation time-constants of subthreshold currents. Similar
transitions between tonic firing and bursting activity, presumably with
similar synchronization effects, can likewise be achieved with alteration
of activation curves of other ion channels.
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