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Abstract

This report presents a comprehensive collection of novel methods
and datasets advancing multimodal Al for behavioral analysis in so-
cial interactions, medical training, emotion recognition, and psychiatric
phenotyping. Contributions include the MultiMediate'25 challenge for
cross-cultural engagement estimation using expanded NOXI and NOXI-
] corpora, a Go-ELAN YOLOv9 model for real-time surgical instrument
detection in cataract videos, the CM3T adapter framework for effi-
cient multimodal transfer learning on inhomogeneous datasets, the
BLEMORE dataset with relative salience annotations for blended emo-
tions, and MEPHESTO analyses revealing context-aware synchrony for
therapeutic alliance, temporal variability for depression-schizophrenia
classification, and trauma-modulated speech patterns in depression via
MADRS/BDI-Il assessments. These works of the INRIA-STARS team on
video understanding of complex human activities bridge gaps in multi-
modal behavioral Al, supporting applications from assistive systems to
personalized psychiatry.
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MultiMediate’25: Cross-Cultural Multi-domain
Engagement Estimation

Estimating momentary conversational engagement is central to as-
sistive, socially aware Al systems, yet models are typically trained and
evaluated within a single domain, limiting real-world robustness. The
MultiMediate'25 challenge (Withanage Don et al. 2025) advances en-
gagement estimation to more challenging, cross-cultural, and multi-
domain settings. Building on prior challenge editions (Miiller, Dietz,
Schiller, Thomas, G. Zhang, et al. 2021; Miiller, Dietz, Schiller, Thomas,
Lindsay, et al. 2022; Miiller, Balazia, Baur, Dietz, Heimerl, Schiller, et al.
2023; Miller, Balazia, Baur, Dietz, Heimerl, Penzkofer, et al. 2024),
we expand beyond NOXI (Cafaro et al. 2017) and MPIIGrouplnterac-
tion (Balazia et al. 2022) (see Figure 1) as the sole training source by
introducing NOXI- (Funk et al. 2024), a new multilingual corpus cov-
ering Japanese and Chinese interactions, enabling both training and
evaluation in diverse linguistic contexts. Although NOXI-] conceptu-
ally extends NOXI, we treat it as a distinct domain because linguistic,
cultural, capture, and annotation differences induce measurable distri-
bution shifts. MultiMediate'25 continues all previously defined tasks
and creates another task: cross-cultural multi-domain engagement
estimation.

In this work, we present new annotations, precomputed multi-modal
features (visual, vocal, and verbal), baseline evaluations, and an anal-
ysis of the best performing challenge solutions. Besides accuracy, we
quantify fairness using conditional demographic disparity for gender
and language. Our baselines confirm strong in-domain performance
(e.g., paralinguistic GeMAPS (Eyben et al. 2015) and video-transformer
features (Liu et al. 2022)) and reveal notable cross-domain drops, un-
derscoring the challenge of cultural, linguistic, and interactional shifts.
Fairness analyses indicate generally small discrepancies for our base-
lines. We observe the largest disparities for the proposed challenge solu-
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tions on the Chinese language part. All annotations, features, code, and
leaderboards are made publicly available to foster sustained progress
on robust and fair engagement estimation.

Participants are provided with the training datasets NOXI and NOXI-J.
NOXl is a corpus of dyadic, screen-mediated face-to-face interactions
in an expert-novice knowledge sharing context. In a session, one par-
ticipant assumes the role of an expert and the other participant the
role of a novice. NOXI includes interactions recorded at three locations
(France, Germany and UK), spoken in seven languages (English, French,
German, Spanish, Indonesian, Arabic and Italian), discussing a wide
range of topics. The languages Indonesian, Arabic, Spanish, and Italian
serve as an out-of-domain evaluation set. NOXI is extended by NOXI-|
consisting of 66 dyadic interactions and over 16 hours of material using
the same setup as original NOXI. NOXI-] features 48 interactions in
Japanese with native Japanese speakers and 18 interactions in Chinese
with Chinese native speakers. See Table 1 for the train-validation-test
split.

The task is frame-wise prediction of each interlocutor’s engagement
on a continuous scale [0, 1]. Accuracy is measured with the Concor-
dance Correlation Coefficient (CCC), ranging from —1 to +1. Partici-
pants are free to use the provided labeled data for training and valida-
tion and undergo in-domain and out-of-domain evaluations on NoXI,
NoXI-J, NoXI (Additional Languages), and MPIIGrouplnteraction. We
provide a multi-modal set of precomputed features to participants.
From the audio signal, we provide transcripts generated with the Whis-
per model. Additionally, we supply GeMAPS (Eyben et al. 2015) features
along with wav2vec 2.0 embeddings (Barrault et al. 2023). From the
video, we provide the backbone embeddings of Video Swin Transformer
(Liu et al. 2022), DINOv2 (Oquab et al. 2024), CLIP (Radford, Kim, Hal-
lacy, et al. 2021) and VideoMAEv2 (L. Wang et al. 2023) and the outputs
of OpenFace 2.0 (Baltrusaitis et al. 2018) and OpenPose (Cao et al.
2019) to cover facial as well as body behaviors.

Identifying Surgical Instruments in Pedagogical
Cataract Surgery Videos through an Optimized
Aggregation Network

Instructional cataract surgery videos are crucial for ophthalmologists
and trainees to observe surgical details repeatedly. In textcitesinha:hal-
04864972, we present a deep learning model for real-time iden-
tification of surgical instruments in these videos, using a custom
dataset scraped from open-access sources. Inspired by the architec-
ture of YOLOV9 (C.-Y. Wang, Yeh, et al. 2025), the model employs
a Programmable Gradient Information (PGI) mechanism and a novel
Generally-Optimized Efficient Layer Aggregation Network (Go-ELAN) to
address the information bottleneck problem, enhancing Minimum Aver-
age Precision (mAP) at higher Non-Maximum Suppression Intersection
over Union (NMS loU) scores.

Go-ELAN YOLOV9 Architecture (see Figure 2) contains an auxiliary
block which works on the Programmable Gradient Information (PGI)
concept by creating an auxiliary reverse branch for enabling reliable gra-
dient calculation by avoiding potential semantic loss. The GELAN block
in the backbone feature extractor is replaced by the Go-ELAN block
proposed in this paper. The Spatial Pyramid Pooling block SPPELAN
removes the fixed size limitation of the backbone. The ADown block
downsamples the generated feature maps to target sizes. The CBLinear
blocks extract higher level features from the images, and the CBFuse
block fuses these extracted features. The Neck combines the acquired

features and the Head predicts the final bounding bound outputs with
their respective probabilities.

Our Go-ELAN YOLOV9 model, evaluated against YOLOVS5 (Jocher
2020), YOLOV7 (C.-Y. Wang, Bochkovskiy, et al. 2023), YOLOv8 (Jocher
et al. 2023), vanilla YOLOv9 (C.-Y. Wang, Yeh, et al. 2025), Laptool
(Namazi et al. 2022) and DETR (Carion et al. 2020), achieves a superior
mAP of 73.74 at loU 0.5 on a dataset of 615 images with 10 instrument
classes, demonstrating the effectiveness of the proposed model. To
illustrate the visual and qualitative superiority of our model, we have
compared 12 ground-truth images with their respective model predic-
tions in Figure 3.

CM3T: Framework for Efficient Multimodal Learn-
ing for Inhomogeneous Interaction Datasets

Challenges in cross-learning involve inhomogeneous or even inade-
quate amount of training data and lack of resources for retraining large
pretrained models. Inspired by transfer learning techniques in NLP,
adapters and prefix tuning, we present a new model-agnostic plugin
architecture for cross-learning, called CM3T (Agrawal et al. 2025), that
adapts transformer-based models to new or missing information (see
Figure 4). We introduce two adapter blocks: multi-head vision adapters
for transfer learning and cross-attention adapters for multimodal learn-
ing. Training becomes substantially efficient as the backbone and other
plugins do not need to be finetuned along with these additions.

Comparative and ablation studies on three datasets Epic-Kitchens-
100 (Damen et al. 2020), MPIIGrouplnteraction (Balazia et al. 2022)
and UDIVA v0.5 (Palmero et al. 2021) show efficacy of this framework
on different recording settings and tasks. With only 12.8% trainable
parameters compared to the backbone to process video input and only
22.3% trainable parameters for two additional modalities, we achieve
comparable and even better results than the state-of-the-art. CM3T
has no specific requirements for training or pretraining and is a step
towards bridging the gap between a general model and specific practical
applications of video classification.

Not All Blends Are Equal: The BLEMORE Dataset
of Blended Emotion Expressions with Relative
Salience Annotations

Humans often experience not just a single basic emotion at a time,
but rather a blend of several emotions with varying salience. Despite
the importance of such blended emotions, most video-based emotion
recognition approaches are designed to recognize single emotions only.
The few approaches that have attempted to recognize blended emo-
tions typically cannot assess the relative salience of the emotions within
ablend. This limitation largely stems from the lack of datasets contain-
ing a substantial number of blended emotion samples annotated with
relative salience. To address this shortcoming, we introduce BLEMORE
(Lachmann et al. 2026), a novel dataset for multimodal (video, audio)
BLended EMOtion REcognition (see Figure 5) that includes information
on the relative salience of each emotion within a blend.

BLEMORE comprises over 3,000 clips from 58 actors, performing 6
basic emotions (anger, disgust, fear, happiness, sadness, and neutral)
and 10 distinct blends consisting of all pairwise combinations of anger,
disgust, fear, happiness, and sadness. All pairwise combinations (see
Figure 6) were further conveyed with three different blend conditions:
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+ 50/50 = same amount of both emotions (e.g. 50/50 happiness-
sadness, both happiness and sadness are expressed in equal pro-
portions)

« 70/30 = the first emotion is more salient than the second emotion
(e.g. 70/30 happiness-sadness conveys mainly happiness blended
with a tinge of sadness)

+ 30/70 = the second emotion is more salient than the first emotion
(e.g. 30/70 happiness-sadness conveys mainly sadness blended
with a tinge of happiness)

Using this dataset, we conduct extensive evaluations of state-of-the-
art video classification approaches on two blended emotion prediction
tasks: (1) predicting the presence of emotions in a given sample, and
(2) predicting the relative salience of emotions in a blend. Our results
show that unimodal classifiers achieve up to 29% presence accuracy and
13% salience accuracy on the validation set, while multimodal methods
yield clearimprovements, with ImageBind (Girdhar et al. 2023) + WavLM
(Chen et al. 2022) reaching 35% presence accuracy and HICMAE (Sun
et al. 2024) 18% salience accuracy. On the held-out test set, the best
model VideoMAEV2 (L. Wang et al. 2023) + HuBERT (Hsu et al. 2021)
achieves 33% presence accuracy and HiCMAE (Sun et al. 2024) 18%
salience accuracy.

BLEMORE dataset is also the basis of BLEMORE competition where
participants develop systems to predict the emotions present in each
recording and the relative salience of each emotion. To support partici-
pation, we provide training data with labels, test data without labels,
pre-extracted audio-visual feature embeddings, and baseline unimodal
and multimodal classification results. The competition offers the first
comprehensive platform for evaluating blended emotion recognition
and aims to stimulate methodological innovation in multimodal affec-
tive computing.

MEPHESTO: Multimodal Phenotyping of Psychi-
atric Disorders from Social Interaction

Identifying objective and reliable markers to tailor diagnosis and
treatment of psychiatric patients remains a challenge, as conditions
like major depression, bipolar disorder, or schizophrenia are qualified
by complex behavior observations or subjective self-reports instead
of easily measurable somatic features. Recent progress in computer
vision, speech processing and machine learning has enabled detailed
and objective characterization of human behavior in social interactions.
However, the application of these technologies to personalized psychi-
atry is limited due to the lack of sufficiently large corpora that combine
multimodal measurements with longitudinal assessments of patients
covering more than a single disorder. Our multi-centre, multi-disorder
longitudinal corpus creation effort MEPHESTO (Konig et al. 2022) is
designed to develop and validate novel multimodal markers for psy-
chiatric conditions. MEPHESTO consists of multimodal audio, video,
and physiological recordings as well as clinical assessments of psychi-
atric patients covering a six-week main study period as well as several
follow-up recordings spread across twelve months.

Diagnoses include schizophrenia, depression and bipolar disorder.
Dataset does not include control subjects. Each patient is contributing
with 1-8 videos, roughly 5.5 videos on average. In addition to video,
the recordings include patients’ and clinicians’ biosignals EDA, BVP, IBI,
heart rate, temperature, and accelerometer. Videos are recorded by

Azure Kinect and biosignals by Empatica. People do not wear face
masks while being recorded, although to minimize the transmission
of COVID-19 there is a large transparent plexi-glass. Dataset is confi-
dential, but many patients agreed to publish their raw or anonymized
data for research purposes. Figure 7 shows a screenshot from a mock
recording.

We have made three contributions regarding therapeutic alliance,
recognizing depression and schizophrenia, and detecting childhood
trauma from speech. These contributions are explained in detail in the
subsections below.

Contextualized Synchrony for Therapeutic Alliance

Non-verbal behavioral synchrony has been widely studied as an
indicator of relational dynamics in clinical interactions and has been
shown to exhibit weak to moderate associations with therapeutic al-
liance (TA). However, most existing synchrony measures are computed
in a content-agnostic manner, implicitly assuming that synchrony oc-
curring at different moments of an interaction contributes equally to
the development of the therapeutic relationship. This work is moti-
vated by the hypothesis that the relational meaning of synchrony is
context-dependent, and that linguistic content may play a critical role
in determining when non-verbal coordination is most relevant to thera-
peutic alliance. In our setting, TA is assessed at the end of each session
via a seven-item patient questionnaire capturing liking, perceived help-
fulness, feeling understood and supported, and ease of sharing personal
information, with the global TA score obtained by averaging item re-
sponses. By integrating semantic information derived from spoken
language with non-verbal synchrony measures, this study aims to move
beyond global, uniform synchrony metrics toward a more fine-grained,
context-sensitive understanding of therapist—patient interaction dy-
namics. Non-verbal synchrony was computed at the window level
using Motion Energy Analysis (MEA (Ramseyer and Tschacher 2011),
see Figure 8 for an example of patient-therapist MEA time series) and
a cross-correlation framework applied to the continuous motion energy
time series of patient and therapist.

For evaluations, we take a subset of the MEPHESTO dataset con-
taining 106 pairs of patient-clinician videos. We evaluate all models by
predicting session-level TA scores and using Pearson's correlation coef-
ficient r between predicted and observed TA as the primary outcome
measure, computed in a session-level cross-validation setting. We first
replicated a stable baseline association between global MEA synchrony
and patient-reported TA, with a content-agnostic aggregation over all
windows yielding a correlation of approximately r ~ 0.22. Building
on this foundation, transcript data were processed into semantic em-
beddings and temporally aligned with synchrony windows, enabling
a multimodal representation in which textual context modulates how
window-level synchrony is aggregated over time. In the current imple-
mentation, not all MEA windows have a corresponding text segment,
so windows without aligned transcripts are ignored when applying text-
informed weighting. Evaluating a uniform (all-ones) aggregation under
this constraint leads to a reduced MEA-TA association of r =~ 0.13,
compared to the r 2 0.22 obtained when all MEA windows are used.
Within this constrained evaluation setting, however, our text-informed
weighting scheme increases the correlation to 7 ~ 0.18, suggesting that
linguistic information helps to highlight synchrony segments that are
more informative about alliance. While the overall performance of this
preliminary implementation does not yet surpass the full-window MEA
baseline, the results support the view that synchrony is not uniformly
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informative throughout an interaction and highlight the potential of
window-level, context-aware multimodal modeling combined with im-
proved textual coverage for capturing subtle relational processes in
therapeutic settings.

Psychiatric Diagnosis Classification through Temporal Be-
havioral Analysis

This part project focuses on automated psychiatric diagnosis through
multimodal behavioral analysis of clinical interview videos, with the
objective of distinguishing between depression and schizophrenia. We
utilize a portion of the MEPHESTO dataset of 34 patients: 25 with
depression and 9 with schizophrenia. The dataset includes manual
behavioral annotations provided by expert clinical annotators who la-
beled over 3000 video segments with observable behaviors. The im-
plemented system (see Figure 9) follows a 7-stage pipeline: (1) input
data acquisition from MEPHISTO with pre-annotated transcriptions,
(2) low-level extraction using OpenFace 3.0 (Hu et al. 2025) (8 Action
Units: AUO1, AUO2, AUO4, AUO6, AUO7, AU12, AU14, AU4S5 + gaze +
head pose + 8 emotions), MediaPipe holistic (Lugaresi et al. 2019) (33
pose, 42 hand, 468 face landmarks), and Whisper (Radford, Kim, Xu,
et al. 2023) for speech (1,842 features/frame), (3) temporal alignment
with frame-level synchronization (+1 frame precision, 33ms), (4) multi-
scale windowing (5s, 10s, 30s windows, 50% overlap) extracting 188
features across 24,588 windows, (5) temporal variability aggregation
computing 6 statistics (mean, standard deviation, coefficient of vari-
ation, minimum, maximum, range) per feature, (6) feature selection
via ANOVA F-test selecting top 20 features (70% speech-based, 30%
visual), and (7) classification with random forest using leave-one-out
cross-validation across 13 tested methods.

Random forest achieves 94.1% accuracy with only two schizophrenia
patients misclassified. Top discriminative feature is the standard devi-
ation of patient’s incomplete utterances. During our experiments we
found that temporal variability is the critical discriminative marker, that
speech features dominate (70%) in the top-20 features, that feature
fusion outperforms modality separation, and that traditional machine
learning beats deep learning on small datasets. In the future, we are
going to focus on temporal trauma detection in the long untrimmed
clinical interviews.

Childhood Trauma Affects Speech and Language Measures
in Patients with Major Depressive Disorder during Clinical
Interviews

Speech analysis has shown significant promise as a potential
biomarker for depression. However, no studies to date have exam-
ined the impact of childhood trauma on speech and language patterns
in individuals with depression. This study aims to explore the relation-
ship between vocal characteristics and depressive symptoms, while
also assessing how childhood trauma may shape these patterns. 27
MEPHESTO participants with a major depressive episode were included.
The severity of depression was assessed using the Montgomery & As-
berg Depression Rating Scale (MADRS) (Montgomery and Asberg 1979)
and the Beck Depression Inventory Il (Beck et al. 1996). Childhood
trauma was measured using a childhood trauma questionnaire. Speech
recordings from the MADRS semi-structured interview and a free clini-
cal interview were analyzed using speaker diarization, automatic speech
recognition, and feature extraction by Whisper (Radford, Kim, Xu, et al.
2023).

Several acoustics features were significantly associated with depres-
sion severity. Correlation analysis revealed that greater depression
severity was linked to shorter, less diverse speech, characterized by
fewer words, fewer semantic clusters, and reduced articulatory effort.
In contrast, childhood trauma was positively associated with distinct
speech characteristics. Higher trauma load was associated with richer,
longer, and more syntactically complex speech. Additionally, utterances
were shorter, with more frequent shifts between semantic clusters, re-
flecting a more fragmented speech pattern influenced by traumatic
load. Our study highlights the influence of childhood trauma on vocal
and linguistic characteristics of patients with depression. Automated
language analysis offers the possibility to identify biomarkers of trau-
matic load in patients with depression. This could improve diagnostic
accuracy, guide therapeutic management and monitor clinical progress.
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Table 1: Engagement estimation datasets used in the MultiMediate'25 challenge. Languages covered by each dataset are given in italics, with the
respective number of interactions in parentheses.

Training Data

| Validation Data |

Test Data

NOXI

English (23), French (7), German (8)

NOXI-J

Japanese (21), Chinese (10)

NOXI
English (3), French (4), German (3)

MPIIGrouplnteraction
German (6)
NOXI-J

Japanese (6), Chinese (4)

NOXI

English (6), French (6), German (4)
NOXI (Additional Languages)

Arabic (2), Italian (2), Indonesian (4), Spanish
4)
MPIIGrouplnteraction

German (6)
NOXI-]

Japanese (6), Chinese (4)
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Figure 3: Qualitative examination of model performance. Rows 1and 3 are labels while 2 and 4 are respective predictions.
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/\
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Figure 4: This is a representation of the main problem CM3T aims to
solve. Backbones pretrained using self-supervised learning provide
good general features, thus all methods of finetuning work well. In the
case of supervised pretraining, adapters fail to perform well (in red) and
CM3T is introduced to solve this (in green).
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Figure 5: Examples of stills from the video recordings. The actor portrays a combination of anger and fear.

1660
videos

1107
videos

Figure 6: Structure of the BLEMORE full dataset (train and test partition)
which contains single emotions and blended emotion expressed with
equal (=) and unequal (<) salience.
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Figure 7: Screenshot of a mock recording with two videos and biosignals. Person in the left represents a clinician and person in the right a patient.
To protect the identity of patients, this mock recording is acted by two clinicians.
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Figure 8: Example of patient-therapist Motion Energy Analysis (MEA) time series over a single therapy session.
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Baseline Random Forest Architecture with Feature Fusion for Psychiatric Diagnosis (Depression vs Schizophrenia)
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Figure 9: This architecture diagram illustrates a multimodal machine learning pipeline for binary psychiatric diagnosis (depression/schizophrenia)
from clinical interview videos. The system combines three parallel feature extraction pipelines: OpenFace 3.0 for facial action units and gaze,
MediaPipe for body pose and hand movements, and Whisper for speech transcription and linguistic analysis. Features are extracted across
multi-scale temporal windows with statistical aggregations to capture temporal variability patterns. After feature fusion into a unified matrix,
ANOVA F-test ranks features by discriminative power, select the top 20, and predictions are made by a random forest classifier.
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